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Future directions in analytics for
infectious disease intelligence
Toward an integrated warning system for emerging pathogens

Barbara A Han1 & John M Drake2,3

E merging infectious diseases are among

the most destructive and costly natu-

ral forces [1]: In terms of human and

monetary losses, epidemics and pandemics

rank with other major natural disasters,

such as earthquakes or tsunamis. And like

earthquakes and tsunamis, much of the

destructive potential of infectious diseases

stems from the fact that they often strike

unexpectedly, leaving little time for prepara-

tion. The best countermeasure is therefore

an early warning to give affected regions or

communities more time to prepare for the

impact. After the devastating earthquake

and tsunami in the Indian Ocean that killed

230,000 people in December 2004, the

Indian Ocean Tsunami Warning System was

installed in 2005 and became operable in

2006: It demonstrated its value after the

Banda Aceh earthquake in 2012 when it

alerted the affected islands within minutes

of the danger. There are some systems for

tracking infectious diseases, such as CDC’s

PulseNet that monitors disease outbreaks

across the USA or the global Influenza

Surveillance and Response System, but these

are focused on particular geographic areas

or on specific diseases. As new diseases

emerge and old diseases re-emerge, as

pathogens and their vectors are transported

worldwide through trade and travel, it is

now time to improve global warning

systems for emerging infectious diseases in

general.

To mitigate the threat of infectious

diseases, our main strategy so far has been a

strong defense after emergence. Once an

outbreak is under control, we improve

infrastructure, develop vaccines, and refine

our vigilance in order to better respond to

the next outbreak so that only a handful

people fall ill instead of hundreds, thou-

sands, or tens of thousands. Our ability to

put out these proverbial fires has indeed

become formidable over time, but it is still

reactive. The outbreak of Ebola in West

Africa did not become a worldwide

pandemic, but it nonetheless wreaked havoc

in West Africa. A total of 26,000 humans

were infected, 11,300 died, and the outbreak

caused losses of about US$2B in the short

term [2] with up to US$15B in estimated

losses to investment, trade, and tourism

over the next couple of years. There are also

concerns about the long-term knock-on

effects on the political and economic stabil-

ity in Guinea, Liberia, and Sierra Leone [1].

A more efficient approach to emerging

infectious disease threats would be

anticipatory: responding to disease

risk rather than occurrence by managing

and reacting to the ebb and flow of risks in

real time. Such a strategy would maintain

vigilance while simultaneously assessing

vulnerabilities: identifying where disease

risk is high, and providing decision support

analysis (see Sidebar A) to identify which

actions could prevent outbreaks or contain

epidemics at the outset.

Anticipating and responding to disease

risk requires interpreting disease events—

outbreaks and epidemics—as emergent

properties of a complex system from which

to gather infectious disease intelligence.

The production of intelligence involves iden-

tifying actionable and biologically meaning-

ful data patterns, developing predictions

about future risk and epidemic trajectories,

and characterizing possible losses under a

range of intervention scenarios. Infectious

disease intelligence therefore relies funda-

mentally on data from multiple sources to

provide a stream of information that can be

inspected by modeling and real-time analyt-

ics to make decisions about prevention,

surveillance, or emergency responses to

outbreaks.

......................................................

“. . . like earthquakes and
tsunamis, much of the
destructive potential of
infectious diseases stems from
the fact that they often strike
unexpectedly, leaving little
time for preparation.”
......................................................

What data and analytics are most

urgently needed to prepare for spillover

from animal reservoirs and subsequent

spread of infectious diseases? For what

populations and regions should these be

collected? The answers to these questions

vary according to where a particular infec-

tious disease falls along a continuum of risks

(Fig 1). To guide the collection of intelli-

gence, we envision the riskscape—the distri-

bution of risk in space—that consists of

three threat levels. At risk level I (yellow),

there are no detectable human cases,

although there may be sources of infection

in proximity to human populations. At risk

level II (orange), human cases of an infec-

tious disease have been verified. At risk
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Figure 1. A model for a global warning system for infectious diseases.
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level III (red), the number of human cases is

growing so large that it pushes the limits of

disease control.

T he data and modeling required to

assess this riskscape are analogous to

that needed for predicting extreme

weather events or wildland fires. The risk of

a wildfire is quantified at various scales,

updated and tracked through time, and coor-

dinated actions are executed in response to

analysis of data from multiple sources [3]. A

fire watch is assigned based on the risk that,

if a spark occurs, a fire will catch. If a fire

has already started, a warning is issued with

continued vigilance and control actions

based on the fire’s speed and spread. If the

fire gets out of control, emergency measures

are executed and a coordinated response

concentrates on containment and damage

control. To apply this analogy to infectious

diseases, a watch may be assigned based on

empirical quantification of the potential of

zoonotic events in an area where conditions

would favor a spillover to humans. If a

disease is already present in human popula-

tions and is increasing in incidence or

spreading to new areas, a warning may be

issued. At the international level, emergency

status is currently assigned when an

outbreak threatens to overwhelm existing

efforts at controlling the disease that has

potential to cause high morbidity and

mortality—particularly, the WHO designa-

tion of a “Public Health Emergency of Inter-

national Concern” recognizes that a threat is

serious and warrants coordinated interna-

tional response.

......................................................

“Anticipating and responding
to disease risk requires
interpreting disease events
[. . .] as emergent properties of
a complex system from which
to gather infectious disease
intelligence.”
......................................................

We think that such a system for classify-

ing infectious disease risk would help to

guide the development of infectious disease

intelligence and to identify best courses of

action. In the following sections, we

consider data needs and modeling technolo-

gies that would serve such activities at each

threat level.

D uring the watch phase, we are

primarily concerned with assessing

the baseline risk of spillovers from

wild animal sources (disease reservoirs) into

humans. This would include knowing, for

example, which reservoir and vector species

occur in an area, and what zoonotic infec-

tions they are known to carry [4]. While

many of these pathogens may not pose an

immediate risk, particularly if there is mini-

mal contact between humans and wildlife

in this area, quantifying the underlying

zoonotic potential is analogous to empirical

horizon scanning to assess conditions that

would favor the development of a wildfire.

Quantifying zoonotic potential would inform

management practices and developments

that could disturb regions with high but

unrealized risk of spillover infections.

To identify conditions that would favor

the emergence of an infectious disease,

statistical (machine) learning algorithms

(see Sidebar A) that are trained on a wide

variety of data can identify relationships

among interacting variables to characterize

how they are associated with background

conditions such as specific weather events.

Such models can be improved continuously

in real time. Quantifying disease risk is anal-

ogous to quantifying the amount of flam-

mable tinder in an area and monitoring its

accumulation in real time. Current analytical

approaches to identifying conditions that

predict spillover infection are in their

infancy, and our understanding of outbreak

prevention is informed primarily by post hoc

detective work, carried out on a case-by-case

basis in the aftermath of costly containment.

The predictive capacity of infectious

disease intelligence is not limited by technol-

ogy. Machine learning methods have already

been shown to be effective at harnessing

data from multiple sources to characterize

the zoonotic potential of particular wildlife

species [5]. Instead, our capacity to predict

spillover events depends on environmental

and ecological data, such as the distribution

of zoonoses and their vectors and reservoir

species, knowledge about pathogens that are

not yet known to infect humans, and the

assimilation of data from multiple sources to

quantify risk and identify trigger conditions

early enough for timely intervention. Creat-

ing a data infrastructure that would enable

real-time risk quantification would empower

the health community to better evaluate the

most reasonable preventative investments—

such as disrupting plausible transmission

chains (prevention), developing vaccines, or

improving facilities to better respond to spill-

over events in high-risk areas. Such capacity-

building would also add value to ongoing

pathogen reconnaissance projects and many

investigator-initiated research programs

across a productive and globally distributed

scientific community.

A t the warning region of the riskscape

(risk level II), we are primarily

concerned with generating predic-

tions that inform ministries of health and

other responders such as the WHO or medi-

cal NGOs to react and respond to a disease

that has already emerged in a human popu-

lation. Interventions during the warning

phase focus on reducing transmission and

mitigating human mortality, economic costs

of treatment, and lost productivity. Modeling

in the warning phase therefore needs to

address various objectives. For example,

mathematically modeling transmission dyna-

mics (see Sidebar A) can yield estimates

about how quickly the disease may spread,

the spatial extent, and epidemiologic

outcomes for human populations—the

number infected, infection-induced mortal-

ity, recovery rates, and so on—along with

the uncertainty in these estimates. The oper-

ational time frame of the warning phase

scales with the disease based on knowledge

of disease transmission. For example, actions

following a warning issued for Ebola virus

would be carried out within days and focus

on the household or the village level [6]; this

contrasts to a warning issued for helminth

parasites for which public health responses

may be carried out over the course of months

or years to treat chronic infection and

prevent transmission [7]. Importantly, the

downstream consequences of an outbreak

could exacerbate the effects of another

disease. These complex interactions can be

nonlinear and occur at dueling timescales

whose dynamical consequences can again be

explored using computer models [8].

......................................................

“The hard limits to forecasting
are set by the volume and
quality of basic scientific
information.”
......................................................

In contrast, the goal of phylodynamic

modeling is to provide a better understanding
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of viral evolution. During the Ebola outbreak,

molecular analyses helped to answer key

epidemiological questions such as confirming

the virus and subtype, whether it was intro-

duced multiple times, and the nature of spill-

over events: This helped to determine that

the Kenema cluster in Sierra Leone was the

result of a novel spillover event. Integrating

epidemiologic and transmission models also

enables conclusions about the contact

network, the basic reproduction number

(R0), and the spread rate. From these data,

one can construct transmission trees to deter-

mine whether there is overdispersion in

contact, depletion of susceptible subjects

in the population, or other population-level

phenomena needed for understanding spread.

These data streams constitute molecular

surveillance. Other pieces of critical informa-

tion are case reporting, animal surveillance

including sentinel species, and environmen-

tal monitoring of ecological data such as

biodiversity and climatic factors that deter-

mine biological interactions.

F inally, emergency measures respond to

outbreaks that threaten to overwhelm

existing control efforts and that have

the potential to exact high levels of human

morbidity and fatality (risk level III): The

WHO declared both the 2014 Ebola outbreak

in West Africa and the ongoing Zika epidemic

Public Health Emergencies of International

Concern. During disease emergencies, the

major goals are quick containment and

damage control in the human population. To

achieve these objectives, forecasting and

scenario analysis must focus on estimating

the amount of control or containment efforts

—such as the number of treatment centers,

the spatial and temporal extent of quarantine,

or the mobilization of existing vaccines—

needed to achieve a desired outcome, which

might be measured in deaths averted, reduc-

tion in disability adjusted life years (DALY),

or some other societal value.

......................................................

“The network of responders is
evolving and improving
with each new outbreak to
become more efficient and
expedient . . .”
......................................................

The goal of forecasting is to predict the

short-term trajectory of a given situation

(see Sidebar A). Data streams that are essen-

tial to improving forecasting are real-time

figures about case counts including location

data, and results of outbreak investigations,

genetic sequences of viral or bacterial

isolates, which can then be used to estimate

both the evolutionary potential of the

pathogen and the actual case burden, and

records of actions taken, such as school

closures, quarantines, or deployments.

Combined, these data can be used to trian-

gulate the current status and trajectory of

evolving epidemics.

Scenario analysis, in contrast, does not

aim to make quantitative predictions, but

explores the possible medium- or long-term

outcomes of the available courses of action

(see Sidebar A). For instance, to provide

useful guidance, modelers need information

about infrastructure and equipment such as

transportation networks, hospitals, labora-

tory locations, and capabilities; about avail-

able technologies including diagnostic tests

and instruments or vaccines; and about

supply chains. To predict the potential

effectiveness of interventions, it is important

to know how effective they are supposed to

be. Additionally, effectiveness is modulated

by individual behaviors, for instance educa-

tion about protective measures or govern-

ment policies, which may have unintended

side effects. Most approaches to modeling

epidemics are either highly abstract, in

which case they may elegantly illuminate the

underlying principles governing disease

dynamics, but lack the flexibility to represent

idiosyncratic conditions on the ground; or

they are detailed “tactical models” that char-

acterize the most likely outcomes, but may

give a false sense of precision, particularly

when data are scarce. During the Ebola

epidemic, we developed a new approach, the

method of plausible parameter sets, which

differs from past approaches in that it aims

to characterize the range of plausible out-

comes and adapts to the quantity and quality

of information available (see Sidebar A) [9].

F rom the preceding sections, it should

be clear that, in our opinion, modeling

and analytics are key to generating

infectious disease intelligence. But models

are not a panacea. One should bear in mind

what we might call the First Law of Informa-

tion: There is no information without data.

This version of you-can’t-get-something-

from-nothing states that models cannot make

up for ignorance. Modeling is not a magical

bridge to cross an information gap. The hard

limits to forecasting are set by the volume

and quality of basic scientific information.

......................................................

“. . . modeling can help to
inform courses of action in
response to the changing and
complex appearance of risk as
events unfold.”
......................................................

If models cannot make up for lack of

information, what can they do? We suggest

that models are quantitative tools for struc-

tured reasoning. Sometimes, this reasoning is

about data: Models can help draw conclu-

sions from data (statistical inference) and

extend knowledge of past observations to

future conditions (extrapolation). Sometimes,

this reasoning is about ideas. For instance,

models may serve as a tool for counterfactual

investigation: How might transmission be

affected by ring vaccination rather than mass

vaccination? What is the value of identifying

and isolating so-called super spreaders

compared with treating everyone equally, or

focusing on protection of the most vulnerable

individuals? It is sometimes said that the

model is “only as good as the data it’s based

on”. But, this is too strong. In fact, even

data-free models can serve a useful purpose

—as a sanity check, a kind of sophisticated

thought experiment to follow an idea through

to its logical consequences. Consider an idea

like “process P is giving rise to observations

O”. For instance, “a depletion of susceptible

persons [process] gives rise to a decline in

Ebola transmission [observation]”. But our

conjecture (P) is complicated: Susceptible

depletion is geographically and socially local;

there is statistical variation in the number of

social contacts each infected person has; and

the more connected individuals become

infected first, so these patients are differen-

tially removed from the transmission process

early in the epidemic. Even though we

cannot intuit our way to the implications of

P, we can nonetheless determine what their

logical entailments are if we encode our key

ideas about P into a model. It may remove P

from the set of plausible hypotheses, for

instance if the required dispersion in social

contacts is impossibly large or if the only

way for such susceptible depletion to work is

an implausible preexisting immunity in the

population.
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Finally, another useful role for models is

to synthesize or stitch together various pieces

of information from different places. Continu-

ing with the Ebola example, we could regard

information on infectious period, mortality

rate, intensity of infection control activities,

activities of Red Cross burial teams as parts

of a tapestry, and the model as a scaffold on

which to hang these pieces and try to make

sense of the bigger picture.

T he network of responders is evolving

and improving with each new

outbreak to become more efficient

and expedient: The international response to

the 2015 outbreak of Zika virus in South

America has been faster and more coordi-

nated than the response to Ebola in 2013.

However, while this network can rapidly

respond once an emerging infectious disease

appears on the landscape, a formal and

integrated international infectious disease

intelligence system has yet to be developed.

Such a system should be structured to operate

on the entire riskscape and to both support

and be informed by modeling and analytics

that cross sectors and disciplines. In such a

system, data collected during the watch phase

would inform decision making during an

emergency; postmortem analyses conducted

after an emergency will inform how we

quantify and respond to future risk [6].

In closing, we consider how infectious

disease intelligence relates to three goals of

any global response to an emerging disease,

as referenced recently in a report by a UN-

appointed panel [2]. First, alleviate loss and

suffering caused by infectious disease;

second, increase global health security and

stability; and third, improve global health

equity. Achieving these goals requires infec-

tious disease intelligence—knowing what,

when, why, and how to respond. Producing

this intelligence depends on collecting data

and modeling the 356 recognized human

infectious diseases, an ambitious task that is

already underway for some diseases in some

regions [10]. Such models can be updated

with data collected during emergencies to

assess efficacy, costs, and time lags to health

improvements.

Similarly, modeling can help to inform

courses of action in response to the changing

and complex appearance of risk as events

unfold. Decision making may be particularly

challenging in the transitions from watch to

warning and from warning to emergency,

with dire consequences: The majority of

Ebola deaths in Sierra Leone have been

attributed to the lag time in response [6].

Forecasting and scenario analyses may be

more useful for decision making during

rapidly evolving crises than well-tuned

models that quickly go out of date. A plural-

istic approach to intelligence is therefore

needed. The answers generated by modeling

and analytics for surveillance (watch),

response (warning), and intervention (emer-

gency) may be imprecise, but they can be

improved. Efforts underway within US

Government to refine infectious disease

analytics, such as infectious disease forecast-

ing (http://bit.do/future-dengue-gov), are a

necessary step forward, but greater resources

and coordination are needed to improve

them, maintain progress, and refine opera-

tional utility of analytical results for decision

making. Such improvements will require

deliberate investment in a quantitative work-

force, scaling up systems for data acquisition,

an ethic of information sharing, and a culture

where decision making and academic model-

ing are mutually supportive and engaged.
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Sidebar A: The use of modeling for disease risk analysis and prediction

Big Data and Machine Learning have generated a plethora of methodologies that are useful for
infectious disease intelligence. For instance, statistical learning algorithms identify certain patterns
in datasets and detect anomalies. Decision support analysis incorporates the models identified by
such algorithms into an organizational or policy-making decision process that can align empirical
outcomes, such as deaths averted, and possible actions. Mathematical models of social, epidemio-
logic, and evolutionary dynamics are useful for explaining how individual decisions (such as hospi-
talization) and events (such as transmission) “scale up” to generate emergent phenomena at the
population level. Such models are often too simplistic for tactical use, but may serve as the core
for more complex simulations. Simulation models may then be used prospectively for short-term
forecasting (prediction of number of cases in the next one to four weeks) or long-term scenario
analysis. Simulation models can also be used inversely to test hypotheses about the underlying
biological mechanisms or to evaluate the plausibility of alternative theories.
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