DGCR8 is essential for tumor progression following PTEN loss in the prostate

Cassandra D Belair1,2,3,*, Alireza Paikari1,2, Felix Moltzahn1,3, Archana Shenoy1,3, Christina Yau4,5, Marc Dall’Era3, Jeff Simko3,6, Christopher Benz4,5 & Robert Blelloch1,2,3,6

Abstract

In human prostate cancer, the microRNA biogenesis machinery increases with prostate cancer progression. Here, we show that deletion of the Dgcr8 gene, a critical component of this complex, inhibits tumor progression in a Pten-knockout mouse model of prostate cancer. Early stages of tumor development were unaffected, but progression to advanced prostatic intraepithelial neoplasia was severely inhibited. Dgcr8 loss blocked Pten null-induced expansion of the basal-like, but not luminal, cellular compartment. Furthermore, while late-stage Pten knockout tumors exhibit decreased senescence-associated beta-galactosidase activity and increased proliferation, the simultaneous deletion of Dgcr8 blocked these changes resulting in levels similar to wild type. Sequencing of small RNAs in isolated epithelial cells uncovered numerous miRNA changes associated with PTEN loss. Consistent with a Pten–Dgcr8 association, analysis of a large cohort of human prostate tumors shows a strong correlation between Akt activation and increased Dgcr8 mRNA levels. Together, these findings uncover a critical role for microRNAs in enhancing proliferation and enabling the expansion of the basal cell compartment associated with tumor progression following Pten loss.

Keywords DGCR8; microRNA; microRNA biogenesis; prostate cancer; PTEN

Introduction

Canonical microRNAs (miRNAs) are transcribed as long RNAs called primary miRNAs (pri-miRNA) that undergo two critical processing steps. First, in the nucleus, the pri-miRNA is processed to a precursor-miRNA (pre-miRNA) by the Microprocessor complex consisting of two proteins, DGCR8 and DROSHA. Next, in the cytoplasm, the pre-miRNA is processed to the mature microRNA duplex by DICER. The levels of the processing machinery are tightly regulated by homeostatic feedback mechanisms in normal tissues [1–4]. However, in cancers, these levels can be dramatically altered (reviewed in [5]). In lung and ovarian cancers, the down-regulation of the biogenesis machinery correlates with poor prognosis, suggesting that miRNAs are suppressing progression of these tumors [6–9]. Indeed, knockdown of the biogenesis machinery can enhance tumorigenicity in an in vivo model of lung cancer [9–11]. In contrast, in esophageal and prostate cancer increases in the biogenesis machinery correlate with tumor progression, suggesting a positive effect of enhanced miRNA biogenesis in this tumor type [12–17].

Profiling experiments have shown that miRNAs are mis-regulated in prostate cancer [16,18–23]. However, overlap between data sets has been poor, likely due to the cellular heterogeneity of this tumor type, differences in sample acquisition, and differences in profiling platforms [24,25]. Functional studies for miRNAs in prostate cancer have been mostly performed in cell lines [26,27]. Two studies have tested the roles of miRNA clusters on the prostate in vivo. Specifically, inhibition of the miR-15/16 cluster or overexpression of the miR-106/25 cluster promotes cell proliferation in an otherwise normal prostate [28,29].

The prostate-specific Pten (phosphatase and tensin homolog deleted on chromosome 10) knockout mouse model (PtenΔ+/−) shows a stereotypical pattern of tumor progression [30–32]. This is characterized by early hyperplasia, followed by dysplasia and architectural disorganization of prostate tubules, and rare microinvasion into surrounding tissue. The model is highly relevant to human prostate cancer as 30% of localized disease and 60% of metastatic disease are associated with Pten loss [33]. Pten loss results in enhanced senescence in early anterior prostate lesions [34]. Suppression of senescence by combining Pten loss with P53 or P27 loss accelerates prostate tumor progression [34,35].

Considering that the miRNA biogenesis machinery is increased with prostate cancer progression in humans, we wanted to test the global role of miRNAs in the PtenΔ+/− model. PtenΔ+/− and Dgcr8loxp/loxp [36,37] conditional mice were combined with a
prostate-specific cre (Probasin-Cre) [38]. Analysis of resulting mice showed that deletion of Dgcr8 did not influence early epithelial hyperplasia, but severely disrupted further progression to dysplasia. Associated with this inhibition of progression was a block in the expansion of cells expressing basal cell markers and a failure to suppress senescence. Therefore, miRNA biogenesis plays essential roles in progression following Pten loss. Profiling of the mouse epithelium uncovered numerous miRNAs whose expression was altered with Pten loss. The Dgcr8 knockout model should provide a powerful means to dissect the role of these and other miRNAs along with their downstream targets. Relevance of this model to human tumors is supported by a statistically significant correlation between AKT activation downstream of PTEN and increased levels of DGC8 across a large cohort of prostate cancer samples.

Results

Dgcr8 loss reduces Pten-knockout tumor formation

To test the role of DGC8 and hence canonical miRNAs in prostate cancer progression, we turned to the Pten and Dgcr8 conditional knockout mouse models. Specifically, probasin-cre [38] (Pb-Cre), which is expressed throughout the prostate epithelium beginning 1 week following birth, was crossed to Dgcr8lox/lox [31] and Dgcr8lox/lox [36,37] conditional knockout alleles, referred from here on as Pten+/− and Dgcr8+/−, respectively. Immunostaining confirmed loss of nuclear DGC8 protein in the epithelium of Dgcr8+/− and Pten+/− Dgcr8+/− prostates at both 12 and 32 weeks of age using two independent antibodies and methods (Fig 1A). To confirm down-regulation of miRNAs associated with Dgcr8 loss, RNA was isolated from prostates of Pten+/+ and Pten+/− Dgcr8+/− mice. Dgcr8 mRNA levels were significantly down in the Pten+/− Dgcr8+/− relative to Pten+/+ (Fig 1B). To test miRNA levels, a multiplex qRT–PCR reaction was performed for 80 miRNAs. Fifty-five of these miRNAs were expressed in at least two of the three Pten+/− samples. Of the 55 miRNAs, 41 were consistently down in the knockouts (Fig 1C). The remaining 14 likely reflect miRNAs highly expressed among the non-epithelial cell contaminants; for example, miR-22 is expressed in fibroblasts [39,40]. These data are consistent with an expected loss of miRNA biogenesis following Pb-cre-driven deletion of Dgcr8 in the prostatic epithelium. Furthermore, phosphorylated-AKT (pAKT) was upregulated in both Pten+/− and Pten+/− Dgcr8+/− prostates relative to their Pten wild-type counterparts showing that Dgcr8 loss did not alter the effect of Pten deletion on the AKT pathway (Figs 1D and EV1).

Next, we asked whether Dgcr8 loss altered tumor development in the Pten null prostate epithelium. We collected prostates from mice aged from 10 to 52 weeks, which were separated into two cohorts—a young cohort (10–14 weeks of age) and an old cohort (32–44 weeks of age). In the young cohort, sixteen of the seventeen Pten+/− mice had developed visible prostate tumors, while only four of the fourteen Pten+/− Dgcr8+/− had done so (Fig 2A and B). Mice were allowed to age to discern whether there was a delay versus a block in tumorigenesis in the absence of Dgcr8. In the older cohort, all Pten+/− mice had large tumors, while eight of twelve Pten+/− Dgcr8+/− mice had developed discernable tumors, a statistically significant decrease (Fig 2A and C). Of note, the Pten+/− Dgcr8+/− mice tended to be slightly older than the Pten+/− mice in the old cohort, but still had fewer tumors (Fig EV2A). Furthermore, the Pten+/− Dgcr8+/− tumors, when present, were generally smaller (Fig 2A). Dgcr8 loss alone produced normal appearing prostates at all ages examined (Figs 2 and EV2A). Together, these data show that Dgcr8 is not essential for postnatal growth of the prostate, but does suppress tumor development following Pten loss.

Dgcr8 loss inhibits histological progression

Loss of Pten results in a stereotypical histological progression over time, initially showing hyperplasia but then progressing to severe dysplasia consistent with high-grade PIN (prostatic intraepithelial neoplasia) [30–32]. To test the effect of Dgcr8 loss on histological progression, prostates from the different genetic backgrounds were sectioned, stained with hematoxylin and eosin, and evaluated by two independent pathologists blinded to genotype [41]. Tissues were scored based on structural and cellular changes in the glandular and stromal compartments and parsed into three groups: normal, benign hyperplasia, and advanced dysplasia (Fig 3A). Hyperplasia was defined as tubules showing epithelial cell expansion often bridging across the lumens, whereby cells appeared relatively normal with little increase in mitoses or necrosis (Fig 3A, middle panels). Dysplasia was defined as expansion of abnormal appearing cells with common mitoses, solid sheets of tumor cell growth, nuclear atypia, and necrosis, all consistent with a higher-grade tumor (Fig 3A, right panels).

Figure 1. Pb-cre-driven deletion of Dgcr8 and Pten.
A Staining for DGC8 protein in prostates. Upper images: immunohistochemical staining using the Aviva Systems Biology antibody (scale bar, 100 μm). Wild-type and Pten+/− prostates have DGC8-positive nuclei in both the basal and luminal cells as well as surrounding stromal cells. Dgcr8+/− and Pten+/− Dgcr8+/− prostates show diminished DGC8 nuclear staining in both basal and luminal cells, but not stromal cells. Cytoplasmic signal is non-specific. Representative images of at least two mice of each genotype from the old cohort were analyzed. Lower images: immunofluorescent staining for DGC8 expression using the Proteintech Group antibody (scale bar, 100 μm). DAPI and DGC8 channels from the same field of view are shown. DAPI staining shows the position of nuclei. The inset shows representative cells 3× zoomed. Arrows indicate cells with positive nuclear stain, and arrowheads indicate cells lacking nuclear stain. Representative images of at least two mice of each genotype from the young cohort were analyzed.
B Relative levels of Dgcr8 transcript in Pten+/− Dgcr8+/− versus Pten+/− alone. qRT–PCR for Dgcr8 exon 3 expression was performed on RNA prepared from frozen sections of 3 mice of each genotype.
C Relative expression levels of 55 miRNAs in Pten+/− Dgcr8+/− versus Pten+/− alone. Multiplex qRT–PCR data for three individuals of each genotype as in (B). C values were normalized to Sno202 levels. Error bars represent standard deviation.
D Representative confocal images of pAKT staining. Immunofluorescent staining of pAKT expression reveals strong expression in Pten+/− and Pten+/− Dgcr8+/− prostates compared to wild type and Dgcr8+/−. AKT phosphorylation is directly downstream of PTEN and is activated upon PTEN loss. Shown are representative images taken from at least two mice per genotype in the old cohort using the Olympus confocal microscope as described in Materials and Methods (scale bar, 100 μm). See Fig EV1 for representative low-magnification images from young and old cohorts.
DGCR8 mRNA level relative to PtenΔ/Δ

Figure 1.
In the young cohort, eight of nine Pten^{−/−} prostates examined and five of eight Pten^{−/−}; Dgcr8^{−/−} showed diffuse hyperplasia (Fig 3B). None of these prostates had evidence of dysplasia. In the old cohort, eight out of eleven Pten^{−/−} mice showed severe dysplasia consistent with high-grade PIN (Fig 3C). Furthermore, a single Pten^{−/−} mouse showed areas suspicious for invasion, although frank invasive carcinoma was never observed (Appendix Fig S1). In contrast, only one of twelve Pten^{−/−}; Dgcr8^{−/−} prostates showed evidence of dysplasia. Instead, ten of twelve showed hyperplasia and one of the twelve showed normal histology. The single dysplastic and single normal Pten^{−/−}; Dgcr8^{−/−} prostate were each from mice aged 44 weeks (Fig EV2B). Double knockout mice aged 1 year still failed to progress to dysplasia (Appendix Fig S2, Fig EV2), suggesting that progression was blocked rather than simply delayed. Importantly, Dgcr8 loss alone had no discernable histological phenotype. Therefore, these findings show that while Dgcr8 is not required for stability of the normal adult prostatic epithelium or for the development of hyperplasia in Pten^{−/−}, it is important for cytologic progression from hyperplasia to dysplasia in the context of Pten loss.

Basal cell expansion associated with Pten loss is reversed by concomitant loss of Dgcr8

Similar to the human prostate, the normal murine prostate epithelium consists of a basal and a luminal cell layer with rare neuroendocrine cells. The basal cells are in direct contact with the basal lamina forming a discontinuous layer adsorbed the periphery of the gland and express the cytokeratin CK5. The luminal cells are larger with distinct apical polarity, form a continuous layer of cells overlying the basal cells, and express the cytokeratin CK8. This architectural organization is lost in Pten^{−/−} prostates [32]. In particular, the luminal cells become multilayered and the CK5-positive basal cells expand out of their normal peripheral niche into the more luminal regions.
To identify a potential role for miRNAs in this phenotype, we stained for CK5 and CK8 in the different genetic backgrounds (Fig 4A, Appendix Fig S3). As previously described, Pten loss resulted in the migration of basal-like cells from the basal lamina into the more luminal regions (Figs 4A and EV3). The number of cells positive for the basal and luminal markers was up in the PtenD/D relative to wild-type prostates (Fig 4B). Loss of Dgcr8 alone did not influence the architecture or the number of CK5 and CK8 staining cells within the tubules (Fig 4A and B). However, in the PtenD/D background the loss of Dgcr8 dramatically altered the phenotype. Indeed, the CK5-positive basal cell compartment of the double knockouts looked strikingly similar to that of the wild-type and Dgcr8 alone knockouts (Figs 4A and EV3F). In contrast, the expansion in the number of CK8-positive luminal cells was similar between PtenA/A and PtenA/A Dgcr8A/A prostates (Fig 4B). Therefore, while Dgcr8 loss alone does not alter the size or architecture of basal and luminal cell compartments, it does block the expansion and mis-localization of the CK5-positive cells normally seen in the Pten null background.

DGCR8 is essential for promoting proliferation and inhibiting senescence in late-stage tumors

PTEN loss has been reported to promote senescence in the anterior prostate, which then diminishes with tumor progression [34,42]. To evaluate the effect of miRNA loss on this phenotype, we stained for...
the senescence marker beta-galactosidase (SA-b-gal) in sections of the dorsal and lateral prostate lobes (Fig 5A). In the young cohort, SA-b-gal staining was consistently detected in all genotypes. This is in contrast to the previous reports that described minimal activity in SA-b-gal staining was consistently detected in all genotypes. The percentage of number of proliferative cells in the luminal region, which were rarely seen in the other genetic backgrounds. The percentage of number of cells staining for the proliferation marker Ki67 was significantly greater in the wild-type, Dgcr8 knockout, and the Pten/Dgcr8 double knockout mice relative to Pten knockout alone (Figs 5C and EV4). In particular, Pten/Dgcr8 mice showed a large number of proliferative cells in the luminal region, which were rarely seen in the other genetic backgrounds. The percentage of Ki67-positive nuclei was quantified in samples from the old cohort showing a significant difference between Pten/Dgcr8 and Pten/Dgcr8 Dgcr8/Dgcr8 samples (Fig 5D). Therefore, Dgcr8 is essential for the decrease in senescence and increase in proliferation seen at late stages of tumor progression in the Pten-knockout mice. Cleaved caspase-3 staining showed only very rare apoptotic cells in all genotypes and thus is unlikely to play a major role (Appendix Fig S4). Together, these data suggest that DGC8 is required to enable progression in the Pten null background.

microRNA changes in Pten null tumors

To identify miRNAs that are altered with Pten loss, we crossed the R26lox-stop-YFP reporter allele into the wild-type and Pten/Dgcr8 lines allowing for isolation of the corresponding prostate epithelial cells (Fig 6A). The specific isolation of the epithelial cells is critical since profiling of whole tumor tissue can lead to erroneous interpretations [43]. RNA libraries were prepared from YFP-positive cells from 3 wild-type and 3 Pten/Dgcr8 prostates and submitted for Illumina sequencing. We found 21 microRNAs whose expression was significantly different (Fig 6B). Seventeen of these miRNAs were expressed at substantial levels in at least one of the two groups [i.e. average of > 100 cpm, all of which showed highly significant changes in expression (Fig 6C)]. Five of these microRNAs (miR-139, 183, 210, 31, and 93) were upregulated with Pten loss and thus are strong candidates for playing a positive role in promoting progression in these prostates.

Figure 4. Dgcr8 is required for Pten/Dgcr8-mediated basal cell expansion.

A Representative confocal images of basal (CK5; green) and luminal (CK8; red) cell populations in indicated genotypes from the old cohort. Nuclei are stained with the DNA dye ToPro3 (blue) (scale bar, 100 μm). B Quantification of basal and luminal cell compartments. The extent of basal and luminal expansion was measured by counting the number of cells staining positive for either CK5 (basal cells) or CK8 (luminal cells) in 63× images taken at the junction of the dorsal–lateral and anterior prostate lobes. Four images from four individual mice were evaluated per genotype for a total of at least 16 microscopic fields of view per genotype. Mean ± standard deviation is shown. The statistical significance was calculated using Student's t-test. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.
Figure 5. Increased senescence and decreased proliferation in PtenΔΔ;Dgcr8ΔΔ relative to PtenΔΔ prostates.

A Senescence: Staining for SA-β-gal (blue). Counter-stained with Nuclear Fast Red. Representative images at 10x magnification are shown.

B Quantification of SA-β-gal-positive cells. Two slides of all old mice shown in Fig 2C were counted. The percentages of SA-β-Gal-positive out of 500 cells total counted per animal. A total of 250 cells were counted on both the right and the left proximal anterior prostate and adjacent dorsal–lateral prostate in the section. Four mice of each genotype were counted. Mean ± SD is shown. Student’s t-test was used to calculate statistical significance. Wild type, PtenΔΔ;Dgcr8ΔΔ, and Dgcr8ΔΔ were not statistically different from each other. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.

C Representative confocal images of proliferation marker Ki67 green with DAPI-stained nuclei overlay (scale bar, 100 μm).

D Quantification of Ki67 staining. The percentage of Ki67 was calculated by determining the ratio of Ki67-positive to all ToPro3-labeled nuclei in the prostate glands. At least four images from four individuals of each genotype were counted. Images were taken in approximately the same location in each prostate at the junction of the dorsal–lateral and anterior prostate lobes. Mean ± SD is shown. Student’s t-test was used to calculate statistical significance. Wild type, PtenΔΔ;Dgcr8ΔΔ, and Dgcr8ΔΔ were not statistically different from each other. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.
A
Mouse genotype

<table>
<thead>
<tr>
<th>WT</th>
<th>PtenKO</th>
<th>Pb-Cre</th>
</tr>
</thead>
<tbody>
<tr>
<td>R26^{LSL}</td>
<td>Pten^{F/F}</td>
<td>+</td>
</tr>
<tr>
<td>+/-</td>
<td>+/-</td>
<td></td>
</tr>
</tbody>
</table>

FACS purify
Isolate Prostate
YPF+ Epithelial Cells

B
Relative miRNA Expression Between WT and PtenKO

C
Subset of miRNAs with Adjusted P-value<0.05 and Counts> 100/million

Figure 6.
Akt activity and Dgcr8 levels are correlated in human prostate cancers

Previously, it had been shown that the microRNA biogenesis machinery, including Dgcr8, is increased in human prostate cancers relative to normal prostate tissue [5,15,16]. To confirm these findings, we performed IHC for Dgcr8 on human prostate cancer samples. Interestingly, staining showed Dgcr8 levels in tumor cells to be similar to levels found in normal basal cells, but increased relative to normal luminal cells (Fig EV5). To expand on these findings, we asked whether there is a direct correlation between Dgcr8 levels and activation of Akt pathway among human prostate cancers. To infer Akt activity, the PARADIGM algorithm was applied to RNA profiling data on 334 prostate adenocarcinoma (PRAD) samples from the Cancer Genome Atlas Program to determine integrated pathway levels (IPLs) [44,45]. A significant positive correlation was uncovered between Dgcr8 expression and PARADIGM-inferred Akt2 IPLs whether evaluated as a continuous measurement (Spearman’s rank correlation (Rho) \(P = 0.25, P = 4.77 E-6 \)) or binned into distinct activity levels (Kruskal-Wallis test \(P = 5.69 E05 \)) (Fig 7A and B). Two hundred of these TCGA PRAD cases had reverse-phase protein array (RPPA) data allowing for independent measurement of Akt activity based on pAKT (pT308 and pS473) levels. While Dgcr8 expression showed no correlation with total Akt protein level (\(P = 0.00, P = 0.99 \)), it had a significant positive correlation with pAKT (pT308) levels (\(P = 0.13, \) and \(P = 0.04 \)) as well as a strong trend for correlation with pAKT (pS473) (\(P = 0.12, P = 0.06 \)), further supporting an association between Akt activation and Dgcr8 (Fig 7C). Together, these findings support the relevance of the mouse model to human prostate cancer.

Discussion

Our findings show that Dgcr8 is not required for the post-natal maintenance of the mouse prostate. However, when combined with a Pten knockout model, the loss of Dgcr8 inhibits tumor progression. This block is associated with inhibition of basal cell compartment expansion and increased senescence-associated beta-galactosidase activity. In contrast, early hyperplasia associated with Pten loss is unaffected by Dgcr8 loss. microRNAs are down in the double knockout relative to Pten knockout alone, consistent with Dgcr8’s known requirement in canonical miRNA biogenesis [37,46]. It has been proposed that Dgcr8 has broad roles in RNA processing beyond microRNAs, based on HTIS-CLIP data showing interaction of Dgcr8 with a large fraction of the coding and non-coding transcriptome [47]. However, more recent work evaluating not only binding but also cleavage of targets in vivo shows that cleavage of non-miRNA targets is rare and of unclear significance [48]. Indeed, Dgcr8 levels track very closely with overall pri-miRNA levels diminishing risk of off-target cleavage [4]. Therefore, the defect in tumor progression in the Pten\(^{-/}\) Dgcr8\(^{-/}\) mice is most easily explained by depletion in tumor-promoting miRNAs.

Interestingly, a number of microRNA families including the miR-106/25, the miR-17-92, and miR-23b clusters promote early hyperplasia in prostate by targeting Pten itself [28,49]. These findings, together with those reported here, suggest two important roles for miRNA control in prostate tumor development (Appendix Fig S5). In the presence of Pten, miRNAs can promote early hyperplasia by suppressing Pten post-transcriptionally. If Pten is genetically lost, this first stage of tumorogenesis occurs in a miRNA-independent fashion. However, with Pten loss, further tumor progression is initially delayed by the induction of senescence, a protective adaptation to otherwise uncontrolled growth, in older animals [34]. Eventually, senescence is overcome and tumor progression occurs in a miRNA-dependent fashion. A role for miRNAs and the miRNA biogenesis machinery in both enhancing and overcoming senescence has been described in other settings [50–52]. The miRNAs responsible for overcoming the senescence block in the current model remain to be determined. However, profiling of the Pten null epithelial cells uncovered a number of miRNAs that were upregulated following PTEN loss including miR-139, 183, 210, 31, and 39. Future studies functionally testing each of these miRNAs in the context of PTEN loss will be important in the determination of their roles in progression.

The importance of miRNAs in promoting prostate cancer progression is supported by the increase in the biogenesis machinery, at the level of both pri- to pre-miRNA (Dgcr8/ DROSHA) and pre- to mature miRNA (Dicer) processing [15–17]. Similar increases are seen in esophageal cancer [12,13]. However, the opposite is seen in other tumors including lung and ovarian [6–9]. The differences between these tumors may reflect the dominant population of miRNAs found within the tumor cells of origin. If tumor-suppressive miRNAs predominate (as would be found in more differentiated cells), it would be beneficial for the cells to decrease miRNA biogenesis. In contrast, if tumor-promoting miRNAs were the major population, then increased miRNA biogenesis would provide a selective advantage. Indeed, the major role of decreased Dicer levels in Ras-induced lung cancer model appears to be the suppression of let-7 processing, a well-known tumor-suppressive miRNA found in most differentiated tissues [53]. Interestingly, we find a correlation between Akt activity and Dgcr8 levels across a large cohort of human prostate cancers. Thus, an alternative to
Published online: July 23, 2015

MicroRNAs and prostate cancer progression

Cassandra D Belair et al

Figure 7. Association between DGCR8 expression and PARADIGM-inferred AKT2 integrated pathway level (IPL) in human prostate adenocarcinoma.

A Scatterplot of DGCR8 mRNA expression versus PARADIGM-inferred AKT2 IPL in 334 TCGA PRAD cases.
B Boxplot showing DGCR8 mRNA expression within AKT2 IPLs defined subgroups.
C Scatterplot of DGCR8 mRNA expression versus pAKT-pT308 protein levels.

What and how microRNAs are regulating prostate cancer remains unclear. The findings reported here suggest two potential roles in post-initiation stages of tumor progression, one in basal cell expansion and the other in controlling senescence. The correlation of the loss of basal cell expansion and decreased tumor progression suggests a central role of the basal cells providing a supportive role in progression, possibly acting as a reservoir for secondary hits. Indeed, many findings have suggested that basal cells can provide the cell of origin for prostate cancer. However, the most dramatic phenotype is in the basal cell layer, where the additional loss of Dgcr8 reverses the basal cell expansion and migration seen with Pten loss alone. Once again, knowing the microRNAs required for progression and cells in which they function should help resolve this issue of the source of the cancer-initiating cells.

The Dgcr8 knockout model provides an opportunity to uncover the microRNAs that are regulating these processes by using an add-back approach. That is, individual microRNAs can be reintroduced one at a time in the otherwise knockout background and tested for rescue of different phenotypes such as basal cell expansion or decreased senescence. This approach has the advantage that it removes the complicating issues of redundancy and cross-reactivity between microRNAs enabling one to focus on one microRNA at a time.

Materials and Methods

Mice were bred and maintained in accordance with UCSF guidelines. Prostates were collected, frozen in OCT, sectioned on a cryostat, and stained using standard protocols. OCT blocks were manually dissected for RNA preparation. RNA levels were measured by multiplex qRT–PCR.

Mice

Generation of the Dgcr8lox/lox mice in our laboratory has been described previously, and mice are available from Jackson Labs (MMRRC:32051 http://jaxmice.jax.org/query) [36,37]. Ptenlox/lox [31] and PBCre4 [38] were crossed with Dgcr8lox/loxlox to obtain the appropriate alleles. The reporter allele R2lox-stop-lacZ-YFP was crossed in to appropriate lines for the small RNA sequencing experiments [67]. Mice were maintained in B6 background. All mice were genotyped from tail DNA by PCR at weaning and at tissue collection using published primers. Mice were housed in the AALAC-accredited (#001084) UCSF Laboratory Animal Research Center. PHS Assurance #A3400-01.
Necropsy and histopathology

Tissue was collected from mice of various genotypes as described previously [41]. Dissected prostates were immediately photographed and then fresh-frozen in OCT (Thermo Scientific). Briefly, the block of tissue was dissected, wiped dry, photographed, and then submerged in OCT in a manner to allow for taking histological sections through the dorsal and lateral prostate lobes. The entire OCT block was submerged in methylbutane (Fisher) that was pre-cooled on dry ice. After 5 min, the block was stored at −20 or −80°C prior to sectioning. A total of 7 µm sections were stored at −80°C until processed for histology or immunostaining. Standard hematoxylin (Sigma) and eosin-Y (Richard-Allen Scientific) staining was performed. At least two independent sections from each tumor were provided to a urologic pathologist for evaluation and characterization. This and all subsequent cellular analysis was performed on sections confirmed to contain dorsal and lateral lobes of the prostate. For all of these samples, the pathologist was blinded as to genotype and tissues were evaluated and classified according to the Bar Harbor Classification scheme [41]. Prostate organ images at 12 weeks old were acquired on an Olympus MVX10 using a 0.63X objective with a DP71 camera and at 32 weeks old on a Leica MZ16 using a 0.71X objective with a DFC320 camera. Histological images were acquired on a Leica DM1000 10× or 40× objective with a DFC290 camera.

Dgcr8 transcript and miRNA expression analysis

Prostate tissue was collected by manual dissection of OCT blocks. RNA was prepared using Trizol reagent (Invtrogen). RNA was quantified on NanoDrop spectrophotometer. Quality of RNA samples was evaluated on an Agilent Bioanalyzer using a Nano kit (Agilent). Gdcr8 qPCR was performed following RT (Invtrogen) on an ABI 7900 real-time PCR machine using SYBR Green mix as previously published; primers were as follows: qDGCR8-F AGGTCTCTGTGCTC CAAAGAAG, qDGCR8-R TGGTCATCATTGGCTGTACACTT [2,37]. Multiplex qRT–PCR for miRNA quantitation was performed exactly according to the published protocol, on the Fluidigm Biomark microfluidics platform [68]. RT and qPCR was performed as previously described using custom-made primers [37].

Senescence activity

Senescence-associated beta-galactosidase (SA-β-gal) was measured as previously described on sections of the dorsal and lateral lobes [69]. Briefly, slides were fixed 10 min in 4% PFA, rinsed with PBS, and then stained with X-gal solution at pH 6.0 overnight at 37°C. Slides were rinsed with PBS, counter-stained lightly with hematoxylin and eosin, dehydrated, and mounted in Cytoseal-60 (Richard-Allen Scientific). Senescence staining was also performed with similar results using the Cellular Senescence Assay Kit (Millipore), counterstained with Nuclear Fast Red (Vector Laboratories), and mounted in glycerol. Images were acquired on a Leica DM1000 10× objective with a DFC290 camera.

Immunostaining

Mouse samples were stained for DGCR8 using two techniques. Samples from the old cohort were prepared using the Vectastain elite rabbit ABC kit following the manufacturer’s instructions after blocking endogenous peroxidase activity with hydrogen peroxide and incubation with the rabbit anti-human-DGCR8 primary antibody (Aviva Systems Biology, ARP40984) overnight at 4°C. All slides were incubated in the substrate for the same amount of time. Color images were acquired on a Leica DM1000 40× objective with a DFC290 camera. Samples from both the cohorts were prepared for immunofluorescent staining by first performing antigen retrieval in 3 mM sodium citrate buffer in a steaming rice cooker for 20 min. After the samples cooled to room temperature, they were rinsed with PBS, blocked with PBS/0.1% Tween-20/10% goat serum, and then incubated in the primary rabbit anti-mouse DGCR8 antibody (ProteinTech Group 10996-1-AP) overnight at 4°C. The slides were then rinsed with PBS twice for 5 min and briefly with PBS/0.1% Tween-20 and then incubated 2 h in the appropriate Alexa Fluor-labeled secondary antibody (Invitrogen) at 1:500 dilution in the same blocking buffer. Nuclei were stained with DAPI. Images were captured using Metamorph (Molecular Dynamics) running a Leica DMi4000B 63× objective and DFC350FX camera.

Immunofluorescent staining was done essentially as for DGCR8 using the following primary antibodies: cleaved caspase-3, rabbit anti-human (Cell Signaling Technology 9664, 1:200); cytokertatin 5, rabbit anti-mouse CK5 (Covance, clone AF138, 1:200); cytokertatin 8, mouse anti-human CK8 (Covance, clone HK-8, 1:50); Ki67, rabbit anti-mouse Ki67 (Thermo, clone SP6, 1:200); and pAKT (Ser473) (Cell Signaling technology D9E, 1:50). ToPro3 (Invitrogen) or DAPI (Invitrogen) was used as a DNA/nuclear counterstain in all fluorescent experiments. Samples for confocal analysis were stained for 10 min with ToPro3 (1:10,000), dipped in water, and then mounted in fluorescent G (Southern Biotech), and images were captured on a Zeiss LSM 5 Pascal confocal microscope using the 63× objective. Samples for epi-fluorescent analysis were stained with DAPI, dipped in water, and then mounted in ProLong Gold (Invitrogen). Images were captured using Metamorph (Molecular Dynamics) running a Leica DMi4000B and DFC350FX camera.

Quantification of molecular markers

Quantification of CK5, CK8, and Ki67 was done on slides prepared from old cohort samples using fluorescent images collected on a Zeiss LSM 5 Pascal confocal microscope (63× objective). Four 63× confocal images per mouse and at least three mice per genotype were analyzed. The images were taken from the dorsal–lateral region proximal to the anterior prostate. The percentage of CK5-, CK8-, or Ki67-positive cells was calculated by counting the number of positive cells out of total ToPro3-labeled nuclei. Counting was constrained to the prostate ducts; stromal cells were not included in the analysis.

SA-β-gal staining was quantified by counting the number of positive cells out of 250 cells from both the right and the left dorsal–lateral prostate for 500 cells total. Four mice for each genotype were quantified. For this analysis, samples were from the old cohort and all stained in the same batch using the published technique [69].

Differential miRNA expression

Prostates were collected from four wild-type and five Ptenlox/loxp mice also expressing PBCre4 and R26lox/stop-lox-YFP. Prostates were...
dissected from the seminal vesicles and urinary tract organs and then prepared for FACS analysis [70]. RNA was prepared using the Qiagen micro miRNeasy kit. Small RNA libraries were prepared as previously described [71] with additional modifications to optimize ligations [72]. The detailed protocol will be posted at www.BlelochLab.ucsf.edu. Pooled small RNA libraries were sequenced on an Illumina HiSeq 2500 machine. Resulting reads were trimmed using CutAdapt (DOI: 10.14806/ej.17.1.200) (parameters: -u 2 –max-n 0 -m 17 -M 36) and mapped as previously described [73].

Statistical analysis

The Freeman-Halton extension of the Fisher’s exact test was used to test whether the differences in tumor formation and histological grouping per genotype were statistically significant. Student’s t-test was used to test whether the differences in immunostaining between genotypes were statistically significant.

Mapped small RNA reads were normalized as counts per million reads mapping to pre-miRNA hairpins. Exploratory analysis using PCA, hierarchical clustering, and comparison of median and variance between samples was used to remove outlier samples. P-values were determined using rowttests on those rows with log2 counts > 0 and then corrected for multiple hypothesis testing using qvalue package in R.

Integration of copy number, mRNA expression, and pathway interaction data was performed on 334 prostate adenocarcinoma (PRAD) samples from The Cancer Genome Atlas (TCGA) program using the PARADIGM algorithm [44,45]. Level 3 RSEM normalized expression and Level 4 GISTIC thresholded copy number data were obtained from Firehose, and pathway interaction data included pathways from the NCI-PID, BioCarta, and Reactome databases. From these data, the PARADIGM algorithm infers an integrated pathway level (IPL) for each pathway feature that reflects its activity in a tumor sample relative to the median activity across all tumors.

Correlation between log2-scaled mRNA expression levels of DCCR8 and the PARADIGM-inferred AKT1, AKT2, and AKT3 IPL was assessed using Spearman’s rank correlation. In addition, we subdivided the data set based on the AKT2 IPL into three groups (median: IPL = 0, low: IPL < 0, high: IPL > 0) and compared the DCCR8 mRNA expression between these three groups using the Kruskal–Wallis test.

Expanded View for this article is available online: http://embor.embopress.org

Acknowledgements

We would like to thank members of the Bleloch Laboratory for critical reading of the manuscript. We would like to thank Samuel Chadwick and Samir Qurashi for their assistance with the mouse husbandry and tissue preparation and Muhammad Danial for his technical assistance in preparing the mouse sequencing libraries. This work was supported by funds to CDB and RB from DOD (PC110468). CDB received additional support from a UCSF Prostate Cancer Center Junior Faculty Award, JS from the UCSF Prostate SPORE, NIH Grant P50CA89520, and FM from the Wissenschaftlich Urologische Gesellschaft eV.

Author contributions

CDB contributed to all figures except Fig 7. AP contributed to Figs 3 and 5, Figs EV2 and EV4. FM contributed to Figs 1 and 5. JS contributed to Figs 1 and 5. MD contributed to Fig EVS. CY and CB contributed to Fig 7. MO contributed to Fig EVS. CDB and RB conceived the project and CDB wrote the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

