Figure EV1. CRISPR/Cas9-mediated knockout of SPATA2 in wild-type and TAK1−/− MEFs.

A Surveyor assay shown for mixed cell cultures generated with different guide RNAs.

B Sequencing of a single cell clone of wild-type MEFs, generated by CRISPR/Cas9 targeting the Spata2 gene, with an identical deletion on both alleles, creating a premature STOP codon.

C Western blotting of control cells generated by CRISPR/Cas9, targeting the luciferase gene or a Spata2 knockout clone of wild-type MEFs, as described in (A).

D Sequencing of a single cell clone of TAK1−/− MEFs, generated by CRISPR/Cas9, targeting the Spata2 gene, with an identical deletion on both alleles, creating a premature STOP codon.
Figure EV2. Increased IκBα degradation in various SPATA2 knockout clones generated with different guide RNAs.
Control cells generated by CRISPR/Cas9 targeting the luciferase gene (Luc) or various SPATA2 knockout clones generated with different guide RNAs (#1–3) were treated with TNF (10 ng/ml) for the indicated time and IκBα degradation was assessed by Western blotting, followed by normalization with anti-tubulin.

Figure EV3. CRISPR/Cas9-mediated knockout of Spata2 in 15P-1 Sertoli cells.
A Surveyor assay shown for a mixed cell culture generated with guide RNA #3.
B Sequencing of a single cell clone, generated by CRISPR/Cas9, targeting the Spata2 gene, with an identical deletion in both alleles, creating a premature STOP codon.