DGCR8 is essential for tumor progression following PTEN loss in the prostate

Cassandra D Belair¹,²,³*, Alireza Paikari¹,², Felix Moltzahn¹,³, Archana Shenoy¹,³, Christina Yau⁴,⁵, Marc Dall’Era³, Jeff Simko³,⁶, Christopher Benz⁴,⁵ & Robert Bleloch¹,²,³,⁶

Abstract

In human prostate cancer, the microRNA biogenesis machinery increases with prostate cancer progression. Here, we show that deletion of the Dgcr8 gene, a critical component of this complex, inhibits tumor progression in a Pten-knockout mouse model of prostate cancer. Early stages of tumor development were unaffected, but progression to advanced prostatic intraepithelial neoplasia was severely inhibited. Dgcr8 loss blocked Pten null-induced expansion of the basal-like, but not luminal, cellular compartment. Furthermore, while late-stage Pten knockout tumors exhibit decreased senescence-associated beta-galactosidase activity and increased proliferation, the simultaneous deletion of Dgcr8 blocked these changes resulting in levels similar to wild type. Sequencing of small RNAs in isolated epithelial cells uncovered numerous miRNA changes associated with PTEN loss. Consistent with a Pten–Dgcr8 association, analysis of a large cohort of human prostate tumors shows a strong correlation between Akt activation and increased Dgcr8 mRNA levels. Together, these findings uncover a critical role for microRNAs in enhancing proliferation and enabling the expansion of the basal cell compartment associated with tumor progression following Pten loss.

Keywords DGCR8; microRNA; microRNA biogenesis; prostate cancer; PTEN

Introduction

Canonical microRNAs (miRNAs) are transcribed as long RNAs called primary miRNAs (pri-miRNA) that undergo two critical processing steps. First, in the nucleus, the pri-miRNA is processed to a precursor-miRNA (pre-miRNA) by the Microprocessor complex consisting of two proteins, DGCR8 and DROSHA. Next, in the cytoplasm, the pre-miRNA is processed to the mature microRNA duplex by DICER. The levels of the processing machinery are tightly regulated by homeostatic feedback mechanisms in normal tissues [1–4]. However, in cancers, these levels can be dramatically altered (reviewed in [5]). In lung and ovarian cancers, the down-regulation of the biogenesis machinery correlates with poor prognosis, suggesting that miRNAs are suppressing progression of these tumors [6–9]. Indeed, knockdown of the biogenesis machinery can enhance tumorigenicity in an in vivo model of lung cancer [9–11]. In contrast, in esophageal and prostate cancer increases in the biogenesis machinery correlate with tumor progression, suggesting a positive effect of enhanced miRNA biogenesis in this tumor type [12–17].

Profiling experiments have shown that miRNAs are mis-regulated in prostate cancer [16,18–23]. However, overlap between data sets has been poor, likely due to the cellular heterogeneity of this tumor type, differences in sample acquisition, and differences in profiling platforms [24,25]. Functional studies for miRNAs in prostate cancer have been mostly performed in cell lines [26,27]. Two studies have tested the roles of miRNA clusters on the prostate in vivo. Specifically, inhibition of the miR-15/16 cluster or overexpression of the miR-106/25 cluster promotes cell proliferation in an otherwise normal prostate [28,29].

The prostate-specific Pten (phosphatase and tensin homolog deleted on chromosome 10) knockout mouse model (Pten^{−/−}) shows a stereotypical pattern of tumor progression [30–32]. This is characterized by early hyperplasia, followed by dysplasia and architectural disorganization of prostate tubules, and rare microinvasion into surrounding tissue. The model is highly relevant to human prostate cancer as 30% of localized disease and 60% of metastatic disease are associated with Pten loss [33]. Pten loss results in enhanced senescence in early anterior prostate lesions [34]. Suppression of senescence by combining Pten loss with P53 or P27 loss accelerates prostate tumor progression [34,35].

Considering that the miRNA biogenesis machinery is increased with prostate cancer progression in humans, we wanted to test the global role of miRNAs in the Pten^{−/−} model. Pten^{−/−} ^{loxP/loxP} [31] and Dgcr8^{loxP/loxP} [36,37] conditional mice were combined with a
prostate-specific cre (Probasin-Cre) [38]. Analysis of resulting mice showed that deletion of Dgcr8 did not influence early epithelial hyperplasia, but severely disrupted further progression to dysplasia. Associated with this inhibition of progression was a block in the expansion of cells expressing basal cell markers and a failure to suppress senescence. Therefore, miRNA biogenesis plays essential roles in progression following Pten loss. Profiling of the mouse epithelium uncovered numerous miRNAs whose expression was altered with Pten loss. The Dgcr8 knockout model should provide a powerful means to dissect the role of these and other miRNAs along with their downstream targets. Relevance of this model to human tumors is supported by a statistically significant correlation between AKT activation downstream of PTEN and increased levels of DGC8R across a large cohort of prostate cancer samples.

Results

Dgcr8 loss reduces Pten-knockout tumor formation

To test the role of Dgcr8 and hence canonical miRNAs in prostate cancer progression, we turned to the Pten and Dgcr8 conditional knockout mouse models. Specifically, probasin-cre [38] (Pb-Cre), which is expressed throughout the prostate epithelium beginning 1 week following birth, was crossed to Pten\(^{\text{lox/lox}}\) [31] and Dgcr8\(^{\text{lox/lox}}\) [36,37] conditional knockout alleles, referred from here on as Pten\(^{\text{A/A}}\) and Dgcr8\(^{\text{A/A}}\), respectively. Immunostaining confirmed loss of nuclear DGC8R protein in the epithelium of Dgcr8\(^{\text{A/A}}\) and Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) prostates at both 12 and 32 weeks of age using two independent antibodies and methods (Fig 1A). To confirm down-regulation of miRNAs associated with Dgcr8 loss, RNA was isolated from prostates of Pten\(^{\text{A/A}}\) and Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) mice. Dgcr8 mRNA levels were significantly down in the Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) relative to Pten\(^{\text{A/A}}\) (Fig 1B). To test miRNA levels, a multiplex qRT–PCR reaction was performed for 80 miRNAs. Fifty-five of these miRNAs were expressed in at least two of the three Pten\(^{\text{A/A}}\) samples. Of the 55 miRNAs, 41 were consistently down in the knockouts (Fig 1C). The remaining 14 likely reflect miRNAs highly expressed among the non-epithelial cell contaminants; for example, miR-22 is expressed in fibroblasts [39,40]. These data are consistent with an expected loss of miRNA biogenesis following Pb-cre-driven deletion of Dgcr8 in the prostatic epithelium. Furthermore, phosphorylated-AKT (pAKT) was upregulated in both Pten\(^{\text{A/A}}\) and Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) prostates relative to their Pten wild-type counterparts showing that Dgcr8 loss did not alter the effect of Pten deletion on the AKT pathway (Figs 1D and EV1).

Next, we asked whether Dgcr8 loss altered tumor development in the Pten null prostate epithelium. We collected prostates from mice aged from 10 to 52 weeks, which were separated into two cohorts—a young cohort (10–14 weeks of age) and an old cohort (32–44 weeks of age). In the young cohort, sixteen of the seventeen Pten\(^{\text{A/A}}\) mice had developed visible prostate tumors, while only four of the fourteen Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) had done so (Fig 2A and B). Mice were allowed to age to discern whether there was a delay versus a block in tumorigenesis in the absence of Dgcr8. In the older cohort, all Pten\(^{\text{A/A}}\) mice had large tumors, while eight of twelve Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) mice had developed discernable tumors, a statistically significant decrease (Fig 2A and C). Of note, the Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) mice tended to be slightly older than the Pten\(^{\text{A/A}}\) mice in the old cohort, but still had fewer tumors (Fig EV2A). Furthermore, the Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) tumors, when present, were generally smaller (Fig 2A). Dgcr8 loss alone produced normal appearing prostates at all ages examined (Figs 2 and EV2A). Together, these data show that Dgcr8 is not essential for postnatal growth of the prostate, but does suppress tumor development following Pten loss.

Dgcr8 loss inhibits histological progression

Loss of Pten results in a stereotypical histological progression over time, initially showing hyperplasia but then progressing to severe dysplasia consistent with high-grade PIN (prostatic intraepithelial neoplasia) [30–32]. To test the effect of Dgcr8 loss on histological progression, prostates from the different genetic backgrounds were sectioned, stained with haematoxylin and eosin, and evaluated by two independent pathologists blinded to genotype [41]. Tissues were scored based on structural and cellular changes in the glandular and stromal compartments and parsed into three groups: normal, benign hyperplasia, and advanced dysplasia (Fig 3A). Hyperplasia was defined as tubules showing epithelial cell expansion often bridging across the lumen, whereby cells appeared relatively normal with little increase in mitoses or necrosis (Fig 3A). Dysplasia was defined as expansion of abnormal appearing cells with common mitoses, solid sheets of tumor cell growth, nuclear atypia, and necrosis, all consistent with a higher-grade tumor (Fig 3A, right panels).

Figure 1. Pb-cre-driven deletion of Dgcr8 and Pten.
A Staining for DGC8R protein in prostates. Upper images: immunohistochemical staining using the Aviva Systems Biology antibody (scale bar, 100 µm). Wild-type and Pten\(^{\text{A/A}}\) prostates have DGC8R-positive nuclei in both the basal and luminal cells as well as surrounding stromal cells. Dgcr8\(^{\text{A/A}}\) and Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) prostates show diminished DGC8R nuclear staining in both basal and luminal cells, but not stromal cells. Cytoplasmic signal is non-specific. Representative images of at least two mice of each genotype from the young cohort were analyzed.
B Relative levels of Dgcr8 transcript in Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) versus Pten\(^{\text{A/A}}\) alone. qRT–PCR for Dgcr8 exon 3 expression was performed on RNA prepared from frozen sections of 3 mice of each genotype.
C Relative expression levels of 55 miRNAs in Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) versus Pten\(^{\text{A/A}}\) alone. Multiplex qRT–PCR data for three individuals of each genotype as in (B). C values were normalized to Sno022 levels. Error bars represent standard deviation.
D Representative confocal images of pAKT staining. Immunofluorescent staining of pAKT expression reveals strong expression in Pten\(^{\text{A/A}}\) and Pten\(^{\text{A/A}}\) Dgcr8\(^{\text{A/A}}\) prostates compared to wild type and Dgcr8\(^{\text{A/A}}\) AKT phosphorylation is directly downstream of PTEN and is activated upon PTEN loss. Shown are representative images taken from at least two mice per genotype in the old cohort using the Olympus confocal microscope as described in Materials and Methods (scale bar, 100 µm). See Fig EV1 for representative low-magnification images from young and old cohorts.
Figure 1.

Wild Type \textit{Pten}^{\Delta/\Delta} \space{\textit{Pten}^{\Delta/\Delta};\textit{Dgcr8}^{\Delta/\Delta}} \space{\textit{Dgcr8}^{\Delta/\Delta}}

\textit{DGCR8} mRNA level relative to \textit{Pten}^{\Delta/\Delta}

0.10

0.1

0.01

relative expression level

miR-126

miR-130a

miR-130b

miR-134

miR-139-5p

miR-141

miR-150

miR-15a

miR-16

miR-17

miR-181a

miR-181b

miR-181c

miR-181d

miR-18a

miR-191

miR-196a

miR-19a

miR-19b

miR-20a

miR-20b

miR-21

miR-214

miR-22

miR-222

miR-223

miR-23a

miR-23b

miR-24

miR-25

miR-26a

miR-26b

miR-27a

miR-27b

miR-28-5p

miR-30a

miR-30b

miR-30c

miR-30d

miR-30e

miR-320a

miR-342-3p

miR-378

miR-421

miR-425

miR-451

miR-486-5p

miR-532-5p

miR-574-3p

miR-574-5p

miR-652

miR-874

miR-93

miR-99a

miR-99b

pAKT/Topro3
In the young cohort, eight of nine Pten\(^{\Delta/\Delta}\) prostates examined and five of eight Pten\(^{\Delta/\Delta}\) Dgcr8\(^{\Delta/\Delta}\) showed diffuse hyperplasia (Fig 3B). None of these prostates had evidence of dysplasia. In the old cohort, eight out of eleven Pten\(^{\Delta/\Delta}\) mice showed severe dysplasia consistent with high-grade PIN (Fig 3C). Furthermore, a single Pten\(^{\Delta/\Delta}\) mouse showed areas suspicious for invasion, although frank invasive carcinoma was never observed (Appendix Fig S1). In contrast, only one of twelve Pten\(^{\Delta/\Delta}\) Dgcr8\(^{\Delta/\Delta}\) prostates showed evidence of dysplasia. Instead, ten of twelve showed hyperplasia and one of the twelve showed normal histology. The single dysplastic and single normal Pten\(^{\Delta/\Delta}\) Dgcr8\(^{\Delta/\Delta}\) prostate were each from mice aged 44 weeks (Fig EV2B). Double knockout mice aged 1 year still failed to progress to dysplasia (Appendix Fig S2, Fig EV2), suggesting that progression was blocked rather than simply delayed. Importantly, Dgcr8 loss alone had no discernable histological phenotype. Therefore, these findings show that while Dgcr8 is not required for stability of the normal adult prostatic epithelium or for the development of hyperplasia in Pten\(^{\Delta/\Delta}\), it is important for cytologic progression from hyperplasia to dysplasia in the context of Pten loss.

Basal cell expansion associated with Pten loss is reversed by concomitant loss of Dgcr8

Similar to the human prostate, the normal murine prostate epithelium consists of a basal and a luminal cell layer with rare neuroendocrine cells. The basal cells are in direct contact with the basal lamina forming a discontinuous layer around the periphery of the gland and express the cytokeratin CK5. The luminal cells are larger with distinct apical polarity, form a continuous layer of cells overlying the basal cells, and express the cytokeratin CK8. This architectural organization is lost in Pten\(^{\Delta/\Delta}\) prostates [32]. In particular, the luminal cells become multilayered and the CK5-positive basal cells expand out of their normal peripheral niche into the more luminal regions.

Figure 2. Loss of Dgcr8 reduces tumor incidence in Pten\(^{\Delta/\Delta}\) model of prostate cancer.

A Representative images of prostates from each genotype. Upper panels: young cohort; lower panels: old cohort. Note large bilateral tumors in old Pten\(^{\Delta/\Delta}\) prostates and smaller bilateral tumors in the young Pten\(^{\Delta/\Delta}\) animals. Other genotypes show examples of normal appearing prostates (scale bar, 100 \(\mu m\)). See Fig EV2A for breakdown of individual mice by age and genotype.

B, C Quantification of tumor incidence (green) represented as percentage of total in the young (B) and old (C) cohorts. The number of mice with each phenotype is shown within bars. Statistical differences were calculated by the Fisher’s exact test. n.s. \(P > 0.05\), *\(P < 0.05\), **\(P < 0.005\), ***\(P < 0.0005\).
To identify a potential role for miRNAs in this phenotype, we stained for CK5 and CK8 in the different genetic backgrounds (Fig 4A, Appendix Fig S3). As previously described, Pten loss resulted in the migration of basal-like cells from the basal lamina into the more luminal regions (Figs 4A and EV3). The number of cells positive for the basal and luminal markers was up in the Pten^D/D relative to wild-type prostates (Fig 4B). Loss of Dgcr8 alone did not influence the architecture or the number of CK5 and CK8 staining cells within the tubules (Fig 4A and B). However, in the Pten^D/D background the loss of Dgcr8 dramatically altered the phenotype. Indeed, the CK5-positive basal cell compartment of the double knockouts looked strikingly similar to that of the wild-type and Dgcr8 alone knockouts (Figs 4A and EV3). In contrast, the expansion in the number of CK8-positive luminal cells was similar between Pten^{Δ/Δ} and Pten^{Δ/Δ} Dgcr8^{Δ/Δ} prostates (Fig 4B). Therefore, while Dgcr8 loss alone does not alter the size or architecture of basal and luminal cell compartments, it does block the expansion and mis-localization of the CK5-positive cells normally seen in the Pten null background.

DGCR8 is essential for promoting proliferation and inhibiting senescence in late-stage tumors

PTEN loss has been reported to promote senescence in the anterior prostate, which then diminishes with tumor progression [34,42]. To evaluate the effect of miRNA loss on this phenotype, we stained for...
the senescence marker beta-galactosidase (SA-β-gal) in sections of the dorsal and lateral prostate lobes (Fig 5A). In the young cohort, SA-β-gal staining was consistently detected in all genotypes. This is in contrast to the previous reports that described minimal activity in wild-type prostates. This difference may reflect regional differences in the degree of senescence. However, similar to the previous reports, there was a reduction in SA-β-gal staining in the dorsal and lateral prostate lobes (Fig 5A). In the young cohort, the number of proliferative cells in the luminal region, which were significantly greater than 40 percent of the cells. Consistent with SA-β-gal-mediated basal cell expansion.

Figure 4. Dgcr8 is required for PtenΔ/Δ-mediated basal cell expansion.

- **A** Representative confocal images of basal (CK5; green) and luminal (CK8; red) cell populations in indicated genotypes from the old cohort. Nuclei are stained with the DNA dye ToPro3 (blue) (scale bar, 100 μm).
- **B** Quantification of basal and luminal cell compartments. The extent of basal and luminal expansion was measured by counting the number of cells staining positive for either CK5 (basal cells) or CK8 (luminal cells) in 63× images taken at the junction of the dorsal–lateral and anterior prostate lobes. Four images from four individual mice were evaluated per genotype for a total of at least 16 microscopic fields of view per genotype. Mean ± standard deviation is shown. The statistical significance was calculated using Student’s t-test. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.

Caspase-3 staining showed only very rare apoptotic cells in all genotypes and thus is unlikely to play a major role (Appendix Fig S4). Together, these data suggest that DGCR8 is required to enable progression in the Pten null background.

MicroRNA Changes in Pten Null Tumors

To identify miRNAs that are altered with Pten loss, we crossed the R26lox-stop-YFP reporter allele into the wild-type and PtenΔ/Δ lines allowing for isolation of the corresponding prostate epithelial cells (Fig 6A). The specific isolation of the epithelial cells is critical since profiling of whole tumor tissue can lead to erroneous interpretations [43]. RNA libraries were prepared from YFP-positive cells from 3 wild-type and 3 PtenΔ/Δ prostates and submitted for Illumina sequencing. We found 21 microRNAs whose expression was significantly different (Fig 6B). Seventeen of these miRNAs were expressed at substantial levels in at least one of the two groups [i.e. average of > 100 cpm, all of which showed highly significant changes in expression (Fig 6C)]. Five of these microRNAs (miR-139, 183, 210, 31, and 93) were upregulated with Pten loss and thus are strong candidates for playing a positive role in promoting progression in these prostates.
Figure 5. Increased senescence and decreased proliferation in Pten^-/- Dgcr8^-/- relative to Pten^-/- prostates.

A Senescence: Staining for SA-β-gal (blue). Counter-stained with Nuclear Fast Red. Representative images at 10× magnification are shown.

B Quantification of SA-β-gal-positive cells. Two slides of all old mice shown in Fig 2C were counted. The percentages of SA-β-Gal-positive out of 500 cells total counted per animal. A total of 250 cells were counted on both the right and the left proximal anterior prostate and adjacent dorsal–lateral prostate in the section. Four mice of each genotype were counted. Mean ± SD is shown. Student's t-test was used to calculate statistical significance. Wild type, Pten^-/- Dgcr8^-/-, and Dgcr8^-/- were not statistically different from each other. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.

C Representative confocal images of proliferation marker Ki67 green with DAPI-stained nuclei overlay (scale bar, 100 μm).

D Quantification of Ki67 staining. The percentage of Ki67 was calculated by determining the ratio of Ki67-positive to all ToPro3-labeled nuclei in the prostate glands. At least four images from four individuals of each genotype were counted. Images were taken in approximately the same location in each prostate at the junction of the dorsal–lateral and anterior prostate lobes. Mean ± SD is shown. Student's t-test was used to calculate statistical significance. Wild type, Pten^-/- Dgcr8^-/-, and Dgcr8^-/- were not statistically different from each other. n.s. P > 0.05, *P < 0.05, **P < 0.005, ***P < 0.0005.
AMouse genotype

WT

PtenΔΔ

<table>
<thead>
<tr>
<th>R26LSL</th>
<th>PtenF/F</th>
<th>Pb-Cre</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Isolate Prostate

FACS purify YPF+ Epithelial Cells

small RNA sequencing

WT PtenΔΔ

BRelative miRNA Expression Between WT and PtenKO

CSubset of miRNAs with Adjusted P-value<0.05 and Counts> 100/million

Figure 6.
Akt activity and Dgcr8 levels are correlated in human prostate cancers

Previously, it had been shown that the microRNA biogenesis machinery, including Dgcr8, is increased in human prostate cancers relative to normal prostate tissue [5,15,16]. To confirm these findings, we performed IHC for Dgcr8 on human prostate cancer samples. Interestingly, staining showed Dgcr8 levels in tumor cells to be similar to levels found in normal basal cells, but increased relative to normal luminal cells (Fig EV5). To expand on these findings, we asked whether there is a direct correlation between Dgcr8 levels and activation of AKT pathway among human prostate cancers. To infer AKT activity, the PARADIGM algorithm was applied to RNA profiling data on 334 prostate adenocarcinoma (PRAD) samples from the Cancer Genome Atlas Program to determine integrated pathway levels (IPLs) [44,45]. A significant positive correlation was uncovered between Dgcr8 expression and PARADIGM-inferred AKT2 IPLs whether evaluated as a continuous measurement (Spearman’s rank correlation (Rho) \(P = 0.25, P = 4.77E-6 \)) or binned into distinct activity levels (Kruskal–Wallis test \(P = 5.69E05 \)) (Fig 7A and B). Two hundred of these TCGA PRAD cases had reverse-phase protein array (RPPA) data allowing for independent measurement of AKT activity based on pAKT (pT308 and pS473) levels. While Dgcr8 expression showed no correlation with total AKT protein level (\(P = 0.00, P = 0.99 \)), it had a significant positive correlation with pAKT (pT308) levels (\(P = 0.13, P = 0.04 \)) as well as a strong trend for correlation with pAKT (pS473) (\(P = 0.12, P = 0.06 \)), further supporting an association between AKT activation and Dgcr8 (Fig 7C). Together, these findings support the relevance of the mouse model to human prostate cancer.

Discussion

Our findings show that Dgcr8 is not required for the post-natal maintenance of the mouse prostate. However, when combined with a Pten knockout model, the loss of Dgcr8 inhibits tumor progression. This block is associated with inhibition of basal cell compartment expansion and increased senescence-associated beta-galactosidase activity. In contrast, early hyperplasia associated with Pten loss is unaffected by Dgcr8 loss. miRNAs are down in the double knockout relative to Pten knockout alone, consistent with Dgcr8’s known requirement in canonical mirna biogenesis [37,46]. It has been proposed that Dgcr8 has broad roles in RNA processing beyond microRNAs, based on HITS-CLIP data showing interaction of Dgcr8 with a large fraction of the coding and non-coding transcriptome [47]. However, more recent work evaluating not only binding but also cleavage of targets in vitro shows that cleavage of non-miRNA targets is rare and of unclear significance [48]. Indeed, Dgcr8 levels track very closely with overall pri-miRNA levels diminishing risk of off-target cleavage [4]. Therefore, the defect in tumor progression in the Pten\(^{\Delta}\) Dgcr8\(^{\Delta}\) mice is most easily explained by depletion in tumor-promoting miRNAs.

Interestingly, a number of microRNA families including the miR-106/25, the miR-17-92, and miR-23b clusters promote early hyperplasia in prostate by targeting Pten itself [28,49]. These findings, together with those reported here, suggest two important roles for miRNA control in prostate tumor development (Appendix Fig SS). In the presence of Pten, miRNAs can promote early hyperplasia by suppressing Pten post-transcriptionally. If Pten is genetically lost, this first stage of tumorigenesis occurs in a miRNA-independent fashion. However, with Pten loss, further tumor progression is initially delayed by the induction of senescence, a protective adaptation to otherwise uncontrolled growth, in older animals [34]. Eventually, senescence is overcome and tumor progression occurs in a miRNA-dependent fashion. A role for miRNAs and the miRNA biogenesis machinery in both enhancing and overcoming senescence has been described in other settings [50–52]. The miRNAs responsible for overcoming the senescence block in the current model remain to be determined. However, profiling of the Pten null epithelial cells uncovered a number of miRNAs that were upregulated following PTEN loss including miR-139, 183, 210, 31, and 93. Future studies functionally testing each of these miRNAs in the context of PTEN loss will be important in the determination of their roles in progression.

The importance of miRNAs in promoting prostate cancer progression is supported by the increase in the biogenesis machinery, at the level of both pri- to pre-miRNA (DGCR8/ DROSHA) and pre- to mature miRNA (DICER) processing [15–17]. Similar increases are seen in esophageal cancer [12,13]. However, the opposite is seen in other tumors including lung and ovarian [6–9]. The differences between these tumors may reflect the dominant population of miRNAs found within the tumor cells of origin. If tumor-suppressive miRNAs predominate (as would be found in a more differentiated cells), it would be beneficial for the cells to decrease miRNA biogenesis. In contrast, if tumor-promoting miRNAs were the major population, then increased miRNA biogenesis would provide a selective advantage. Indeed, the major role of decreased Dicer levels in Ras-induced lung cancer model appears to be the suppression of let-7 processing, a well-known tumor-suppressive miRNA found in most differentiated tissues [53]. Interestingly, we find a correlation between AKT activity and Dgcr8 levels across a large cohort of human prostate cancers. Thus, an alternative to...
tumor type is that the decrease or increase in the biogenesis machinery is associated with the underlying genetic changes. That is, while increased Ras activity may require decreased miRNA production for progression, Akt activity may require increased miRNA biogenesis. Going forward, it will be important to evaluate such relationships.

Pb-cre-driven Dgcr8 deletion alone did not produce a discernable phenotype in terms of histology, basal or luminal cell number, proliferation or senescence. These findings contrast with a publication evaluating the effect of Pb-cre-driven deletion of Dicer [54]. Dicer deletion resulted in apoptosis of luminal cells and concomitant increase in proliferation of the basal cells, neither of which were seen in the Dgcr8 knockout prostates. While Dgcr8 and Dicer are both essential for the processing of canonical miRNAs, Dicer has additional roles [55]. In particular, Dicer is essential for the processing of endo-siRNAs and non-canonical miRNAs including mirtrons and shRNAs [56]. Therefore, the difference in phenotype between Dgcr8 and Dicer loss may be explained by roles for these other subclasses of small RNAs in the prostate. The inhibitory effect of Dicer loss on luminal cells was not overcome by Pt en loss in this model again consistent with additional roles for Dicer [57]. It will be interesting to search for DGCR8-independent small RNAs in the prostate and determine whether their roles can explain the differences in phenotype following Dgcr8 and Dicer loss.

What and how microRNAs are regulating prostate cancer remains unclear. The findings reported here suggest two potential roles in post-initiation stages of tumor progression, one in basal cell expansion and the other in controlling senescence. The correlation of the loss of basal cell expansion and decreased tumor progression suggests a central role of the basal cells providing a supportive role in progression, possibly acting as a reservoir for secondary hits. Indeed, many findings have suggested that basal cells can provide the cell of origin for prostate cancer [58–61]. Other findings would suggest that rare luminal stem-like cells can also be efficiently transformed following specific deletion of Pten [62,63]. In our double knockout model, we find that the luminal cells expand in the absence of miRNAs, but many become senescent. However, the most dramatic phenotype is in the basal cell layer, where the additional loss of Dgcr8 reverses the basal cell expansion and migration seen with Pten alone. Once again, knowing the miRNAs required for progression and cells in which they function should help resolve this issue of the source of the cancer-initiating cells.

The Dgcr8 knockout model provides an opportunity to uncover the miRNAs that are regulating these processes by using an add-back approach [64–66]. That is, individual miRNAs can be reintroduced one at a time in the otherwise knockout background and tested for rescue of different phenotypes such as basal cell expansion or decreased senescence. This approach has the advantage that it removes the complicating issues of redundancy and cross-reactivity between miRNAs enabling one to focus on one miRNA at a time.

Materials and Methods

Mice were bred and maintained in accordance with UCSF guidelines. Prostates were collected, frozen in OCT, sectioned on a cryostat, and stained using standard protocols. OCT blocks were manually dissected for RNA preparation. miRNA levels were measured by multiplex qRT–PCR.

Mice

Generation of the Dgcr8^{lox_{Lox}/lox_{Lox}} mice in our laboratory has been described previously, and mice are available from Jackson Labs (MMRRC:32051 http://jaxmice.jax.org/query) [36,37]. Pten^{lox_{Lox}/lox_{Lox}} [31] and PBCre4 [38] were crossed with Dgcr8^{lox_{Lox}/lox_{Lox}} to obtain the appropriate alleles. The reporter allele R2^{lox_{Lox}/lox_{Lox}} was crossed in to appropriate lines for the small RNA sequencing experiments [67]. Mice were maintained in B6 background. All mice were genotyped from tail DNA by PCR at weaning and at tissue collection using published primers. Mice were housed in the AALAC-accredited (#001084) UCSF Laboratory Animal Research Center. PHS Assurance #A3400-01.
Necropsy and histopathology

Tissue was collected from mice of various genotypes as described previously [41]. Dissected prostates were immediately photographed and then fresh-frozen in OCT (Thermo Scientific). Briefly, the block of tissue was dissected, wiped dry, photographed, and then submerged in OCT in a manner to allow for taking histological sections through the dorsal and lateral prostate lobes. The entire OCT block was submerged in methylbutane (Fisher) that was pre-cooled on dry ice. After 5 min, the block was stored at −20 or −80°C prior to sectioning. A total of 7 μm sections were stored at −80°C until processed for histology or immunostaining. Standard hematoxylin (Sigma) and eosin-Y (Richard-Allen Scientific) staining was performed. At least two independent sections from each tumor were provided to a urologic pathologist for evaluation and characterization. This and all subsequent cellular analysis was performed on sections confirmed to contain dorsal and lateral lobes of the prostate. For all of these samples, the pathologist was blinded as to genotype and tissues were evaluated and classified according to the Bar Harbor Classification scheme [41]. Prostate organ images at 12 weeks old were acquired on an Olympus MVX10 using a 0.63X objective with a DFC120 camera and at 32 weeks old on a Leica MZ16 using a 0.63X reducer and 0.71X objective with a DFC320 camera. Histological images were acquired on a Leica DM1000 10× or 40× objective with a DFC290 camera.

Dgcr8 transcript and miRNA expression analysis

Prostate tissue was collected by manual dissection of OCT blocks. RNA was prepared using Trizol reagent (Invitrogen). RNA was quantified on NanoDrop spectrophotometer. Quality of RNA samples was evaluated on an Agilent Bioanalyzer using a Nano kit (Agilent). Dgcr8 qPCR was performed following RT (Invitrogen) on an ABI 7900 real-time PCR machine using SYBR Green mix as previously published [41]. Dgcr8 was evaluated on an Agilent Bioanalyzer using a Nano kit (Agilent). Dgcr8 qPCR was performed following RT (Invitrogen) on an ABI 7900 real-time PCR machine using SYBR Green mix as previously published [41]. Dissected prostates were immediately photographed and then fresh-frozen in OCT (Thermo Scientific). Briefly, the block of tissue was dissected, wiped dry, photographed, and then submerged in OCT in a manner to allow for taking histological sections through the dorsal and lateral prostate lobes. The entire OCT block was submerged in methylbutane (Fisher) that was pre-cooled on dry ice. After 5 min, the block was stored at −20 or −80°C prior to sectioning. A total of 7 μm sections were stored at −80°C until processed for histology or immunostaining. Standard hematoxylin (Sigma) and eosin-Y (Richard-Allen Scientific) staining was performed. At least two independent sections from each tumor were provided to a urologic pathologist for evaluation and characterization. This and all subsequent cellular analysis was performed on sections confirmed to contain dorsal and lateral lobes of the prostate. For all of these samples, the pathologist was blinded as to genotype and tissues were evaluated and classified according to the Bar Harbor Classification scheme [41]. Prostate organ images at 12 weeks old were acquired on an Olympus MVX10 using a 0.63X objective with a DFC120 camera and at 32 weeks old on a Leica MZ16 using a 0.63X reducer and 0.71X objective with a DFC320 camera. Histological images were acquired on a Leica DM1000 10× or 40× objective with a DFC290 camera.

Senescence activity

Senescence-associated beta-galactosidase (SA-β-gal) was measured as previously described on sections containing the dorsal and lateral lobes [69]. Briefly, slides were fixed 10 min in 4% PFA, rinsed with PBS, and then stained with X-gal solution at pH 6.0 overnight at 37°C. Slides were rinsed with PBS, counter-stained lightly with hematoxylin and eosin, dehydrated, and mounted in Cytoseal-60 (Richard-Allen Scientific). Senescence staining was also performed with similar results using the Cellular Senescence Assay Kit (Millipore), counterstained with Nuclear Fast Red (Vector Laboratories), and mounted in glycerol. Images were acquired on a Leica DM1000 10× objective with a DFC290 camera.

Immunostaining

Mouse samples were stained for DGCR8 using two techniques. Samples from the old cohort were prepared using the Vectastain elite rabbit ABC kit following the manufacturer’s instructions after blocking endogenous peroxidase activity with hydrogen peroxide and incubation with the rabbit anti-human-DGCR8 primary antibody (Aviva Systems Biology, ARP40984) overnight at 4°C. All slides were incubated in the substrate for the same amount of time. Color images were acquired on a Leica DM1000 40× objective with a DFC290 camera. Samples from both the cohorts were prepared for immunofluorescent staining by first performing antigen retrieval in 3 mM sodium citrate buffer in a steaming rice cooker for 20 min. After the samples cooled to room temperature, they were rinsed with PBS, blocked with PBS/0.1% Tween-20/10% goat serum, and then incubated in the primary rabbit anti-mouse DGCR8 antibody (Proteintech Group 10996-1-AP) overnight at 4°C. The slides were then rinsed with PBS twice for 5 min and briefly with PBS/0.1% Tween-20 and then incubated 2 h in the appropriate Alexa Fluor-labeled secondary antibody (Invitrogen) at 1:500 dilution in the same blocking buffer. Nuclei were stained with DAPI. Images were captured using Metamorph (Molecular Dynamics) running a Leica DM4000B 63× objective and DFC350FX camera.

Immunofluorescent staining was done essentially as for DGCR8 using the following primary antibodies: cleaved caspase-3, rabbit anti-human (Cell Signaling Technology 9664 1:200); cytokertatin 5, rabbit anti-mouse CK5 (Covance, clone AF138, 1:200); cytokertatin 8, mouse anti-human CK8 (Covance, clone HK-8, 1:50); Ki67, rabbit anti-mouse Ki67 (Thermo, clone SP6, 1:200); and pAKT (Ser473) (Cell Signaling technology D9E, 1:50). ToPro3 (Invitrogen) or DAPI (Invitrogen) was used as a DNA/nuclear counterstain in all fluorescent experiments. Samples for confocal analysis were stained for 10 min with ToPro3 (1:10,000), dipped in water, and then mounted in fluoromount-G (Southern Biotech), and images were captured on a Zeiss LSM 5 Pascal confocal microscope using the 63× objective. Samples for epifluorescent analysis were stained with DAPI, dipped in water, and then mounted in ProLong Gold (Invitrogen). Images were captured using Metamorph (Molecular Dynamics) running a Leica DM4000B and DFC350FX camera.

Quantification of molecular markers

Quantification of CK5, CK8, and Ki67 was done on slides prepared from old cohort samples using fluorescent images collected on a Zeiss LSM 5 Pascal confocal microscope (63× objective). Four 63× confocal images per mouse and at least three mice per genotype were analyzed. The images were taken from the dorsal–lateral region proximal to the anterior prostate. The percentage of CK5-, CK8-, or Ki67-positive cells was calculated by counting the number of positive cells out of total ToPro3-labeled nuclei. Counting was constrained to the prostate ducts; stromal cells were not included in the analysis.

SA-β-gal staining was quantified by counting the number of positive cells out of 250 cells from both the right and the left dorsal–lateral prostate for 500 cells total. Four mice for each genotype were quantified. For this analysis, samples were from the old cohort and all stained in the same batch using the published technique [69].

Differential miRNA expression

Prostates were collected from four wild-type and five Ptenlox/lox mice also expressing BCre4 and R26lox-stop-lox-YFP. Prostates were
dissected from the seminal vesicles and urinary tract organs and then prepared for FACS analysis [70]. RNA was prepared using the Qiagen micro miRNeasy kit. Small RNA libraries were prepared as previously described [71] with additional modifications to optimize ligations [72]. The detailed protocol will be posted at www.BiellochLab.ucsf.edu. Pooled small RNA libraries were sequenced on an Illumina HiSeq 2500 machine. Resulting reads were trimmed using CutAdapt (DOI: 10.14806/ej.17.1.200) (parameters: -u 2 –max-n 0 -m 17 -M 36) and mapped as previously described [73].

Statistical analysis

The Freeman-Halton extension of the Fisher’s exact test was used to test whether the differences in tumor formation and histological grouping per genotype were statistically significant. Student’s t-test was used to test whether the differences in immunostaining between genotypes were statistically significant.

Mapped small RNA reads were normalized as counts per million reads mapping to pre-miRNA hairpins. Exploratory analysis using Geneset analysis of RNA-induced silencing complex-related proteins AGO 2 and the PARADIGM-inferred AKT1, AKT2, and AKT3 IPL between Drosha and DGCR8. The authors declare that they have no conflict of interest.

References

