The SCFSlimb E3 ligase complex regulates asymmetric division to inhibit neuroblast overgrowth

Song Li1,2, Cheng Wang1, Edwin Sandanaraj3,4, Sherry S Y Aw1,†, Chwee T Koe1,2, Jack J L Wong2,5, Fengwei Yu1,2,5, Beng T Ang3,4,6, Carol Tang4,6,7 & Hongyan Wang1,2,6,*

Abstract

Drosophila larval brain neuroblasts divide asymmetrically to balance between self-renewal and differentiation. Here, we demonstrate that the SCFSlimb E3 ubiquitin ligase complex, which is composed of Cul1, SkpA, Roc1a and the F-box protein Supernumerary limbs (Slimb), inhibits ectopic neuroblast formation and regulates asymmetric division of neuroblasts. Hyperactivation of Akt leads to similar neuroblast overgrowth and defects in asymmetric division. Slimb associates with Akt in a protein complex, and SCF Slimb acts through SAK and Akt to inhibit neuroblast overgrowth. Moreover, Beta-transducin repeat containing, the human ortholog of Slimb, is frequently deleted in highly aggressive gliomas, suggesting a conserved tumor suppressor-like function.

Keywords asymmetric division; neuroblasts; polarity; the SCF complex

Results and Discussion

The SCFSlimb E3 ligase complex suppresses NB overproliferation in larval brains

Knockdown (KD) of cullin1 (cull1) using the NB driver insc-Gal4 resulted in a prominent NB overproliferation in larval brains (supplementary Fig S1B). Approximately 300 NBs that expressed the NB marker Deadpan (Dpn) were observed in a pupal lethal cul1EY11668 mutant at 96 h after larval hatching (ALH) (supplementary Fig S1C; n = 20) compared with approximately 100 NBs in wild-type (WT) central brains (supplementary Fig S1A; n = 20). Animals that were
trans-heterozygous for \textit{cul1}^{EY11668} and a null allele \textit{cul1}^{Es} (henceforth referred to as \textit{cul1}^{-/-}) displayed 473 ± 100 NBs (Fig 1B and E; \(n = 23 \)), which was fully rescued by a Flag-\textit{cul1} transgene (supplementary Fig S1D–F). In a time course experiment, \textit{cul1}^{-/-} exhibited a dramatic increase in NB numbers at late larval stages (Fig 1E). The numbers of cells labeled by phospho-Histone H3 (pH3), dMyc, and EdU were significantly increased in \textit{cul1}^{-/-}, compared with WT brains (Fig 1C–D; supplementary Fig S1G–J). A dramatic decrease in the number of neurons labeled by Embryonic lethal abnormal vision (Elav) or nuclear Pros was observed in \textit{cul1}^{-/-} brains (supplementary Fig S1K–N). There was only one NB in each WT type I (Fig 1F; 100\%, \(n = 32 \)) or type II (Fig 1J; 100\%, \(n = 19 \)) NB MARCM (Mosaic Analysis with Repressible Cell Marker [13]) clone. In contrast, \textit{cul1}^{Es} clones contained ectopic NBs in both type I (Fig 1G; 40\%, \(n = 20 \)) and type II (Fig 1K; 44\%, \(n = 18 \)) lineages. \textit{cul1} KD using a “type II driver” (see Materials and Methods) also resulted in the generation of multiple NBs (supplementary Fig S3B; 54.7\%, \(n = 75 \)).

We next assessed the function of two other \textit{Drosophila} SCF subunits, SkpA and Roc1a. Clones derived from \textit{skpA}^{1}, a loss-of-function allele, displayed ectopic NBs in both type I (Fig 1H; 50\%, \(n = 16 \)) and type II lineages (Fig 1L; 62\%, \(n = 21 \)). SkpA KD also resulted in 450 ± 83 NBs (supplementary Fig S3H; \(n = 20 \)), in contrast to 117 ± 15 NBs in the control (supplementary Fig S3G; \(n = 20 \)). \textit{skpA} KD under the type II driver also resulted in NB overproliferation (supplementary Fig S3C; 33.3\%, \(n = 66 \)). A different \textit{skpA} RNAi line resulted in NB underproliferation in a RNAi screen [14], likely due to the effect of unknown positional insertion. Likewise, \textit{roc1a}^{G1} clones possessed extra NBs in both type I (Fig 1I; 56\%, \(n = 18 \)) and type II (Fig 1M; 64\%, \(n = 22 \)) NB clones. \textit{roc1a} KD under the type II driver also caused the formation of ectopic NBs (supplementary Fig S3D; 56\%, \(n = 33 \)).
Figure 2. The SCF^{slimb} complex regulates asymmetric division of NBs.

A–F aPKC and Numb localization in control (MACRM driver), cul1^{Ex}, roc1a^{G1}, skpA1 and slimb⁸ metaphase NBs in clones. DNA is in blue, and insets are enlarged views of single NBs. Arrow, ectopic apical Numb.

G, H WT and cul1^{/C0} NBs at telophase are labeled for aPKC, Numb and DNA.

I–K WT, cul1^{/C0}, and cul1^{/C0}; insc-Gal4 UAS-Flag-Cul1 (insc>Flag-Cul1) NBs are labeled by Insc, α-tubulin and DNA. Mitotic spindle orientation is quantified in (I–K).

L, M Live-imaging stills of control and cul1^{/C0} expressing Ubi-α-tubulin-GFP. Time is shown as minutes: seconds. The cartoon illustrations are shown at the right corner.

Data information: Scale bars, 5 μm.
F-box proteins confer substrate specificity to various SCF E3 ubiquitin ligases [15]. Among 35 F-box proteins we identified Supernumerary limbs (Slimb) through RNAi targeting and mutant analyses (supplementary Table S1). Clones of the loss-of-function allele slimb00295 exhibited a NB overgrowth in both type I (Fig 1N; 42%, n = 24) and type II (Fig 1O; 30%, n = 23) lineages. In the stronger allele slimbΔ, ectopic NBs were also observed in both type I (supplementary Fig S2B, B'; 45%, n = 20) and type II lineages (supplementary Fig S2D, D'; 50%, n = 24). Likewise, slimb KD under insc-Gal4 resulted in 27 ± 1 NBs per brain hemisphere compared with control brains (101 ± 8 NBs; supplementary Fig S2E–G). slimb under the type II driver also generated supernumerary NBs (supplementary Fig S3F). Loss of three other F-box proteins, Skp2, Cul1, and Nedd8, did not result in NB overgrowth (supplementary Fig S4A–D). Clones for two other E2 enzymes, Skp2, Nutracker (Ntc) or Ago, did not result in NB overgrowth (supplementary Fig S3I–O).

The SCFSlimb complex regulates asymmetric division of NBs

In cul1Ex clones, 55% of metaphase NBs displayed either uniformly cortical or diffused cytoplasmic aPKC localization (Fig 2B; n = 31), in contrast to WT NBs (Fig 2A; 100%, n = 18). Consistently, 39% of cul1Ex metaphase NBs exhibited delocalized Numb (Fig 2C; n = 31), in contrast to control NBs (Fig 2A; 100%, n = 18). The localization of other polarized proteins, including Bazooka (Baz), Par6, Incs, and Pins, was mildly disrupted as cortical distribution or misoriented crescents in the cul1 NBs (supplementary Fig S4A–H). cul1 NBs also displayed a spindle misorientation at metaphase (Fig 2J, J'; 40%, n = 95; WT, Fig 2I, I') with 13% of NBs showed a 90° misalignment (orthogonal division) of the mitotic spindle with the apicobasal axis (Fig 2J, J'; n = 95). This defect in cul1 mutants was fully rescued by the expression of Flag-tagged Cul1 (Fig 2K, K'; n = 31). aPKC (5.4%, n = 205) and Numb (5.4%, n = 205) were missegregated into both daughter cells during telophase in cul1 NBs (Fig 2H) compared with the control (Fig 2G; n = 136).

In time-lapse experiments on living whole-mount brain explants expressing α-tubulin-GFP, control NBs always divide asymmetrically (Fig 2L; n = 21). In contrast, 22% of cul1NBs divided to generate two similar-sized daughters (Fig 2M; n = 23), a remarkable phenotype in asymmetric division. Although cul1 NBs showed a delay in mitosis, cell division defects are unlikely a major cause of NB polarity defects in mutants for the SCF complex, because several known cell division mutants did not affect cell polarity [16–18].

rocia41 clones also exhibited delocalization of aPKC (Fig 2D; 28.6%, n = 14) and Numb (Fig 2D; 28.6%, n = 14) at metaphase. Similarly, in skpa1 clones, 37.5 and 12.5% of metaphase NBs displayed delocalized aPKC and Numb, respectively (Fig 2E; n = 16). Interestingly, aPKC (Fig 2F; 71%, n = 7) and Numb (Fig 2F; 57%, n = 7) were dramatically delocalized in metaphase NBs derived from slimbΔ clones. Spindle misorientation defects were also observed in skpA1 (supplementary Fig S4J; 43%, n = 14) and slimb00295 (supplementary Fig S4K; 29%, n = 28) clones. Therefore, we conclude that the SCFSlimb complex plays an important role in regulating NB asymmetric division.

In aPKC06403 cul1 double mutant, the NB number was significantly reduced at 70 h ALH (supplementary Fig S5 and D; n = 2), compared with the cul1– control (supplementary Fig S5B and D; n = 20 ± 2, n = 21). Further, the NB overgrowth in cul1 was largely suppressed by notch241 at 84 h ALH at 29°C (supplementary Fig S5E–H). These data suggest that Cul1 may function upstream of aPKC and Notch signaling or redundantly with them to inhibit NB overgrowth.

Uba1, Eff and Nedd8 suppress NB overproliferation and regulate asymmetric division

Uba1 is the only E1 enzyme in Drosophila and in a loss-of-function uba13446 allele, ectopic NBs were observed in both type I (Fig 3B; 40%, n = 42) and type II clones (Fig 3F; 26%, n = 31). Among 16 genes encoding E2 enzymes (supplementary Table S2), RNAi targeting of two of them, effete (eff; also called ubcD1) (supplementary Fig S6B, B') and ubcD10 (data not shown), resulted in type II NB overgrowth. Ectopic NBs were observed in both type I (Fig 3C; 33%, n = 36) and type II (Fig 3G; 40%, n = 32) eff773 clones, but not in clones of ubcD10 (supplementary Fig S6E–F). Given that the ubcD10 KD construct has predicted off-target sites, the phenotype caused by ubcD10 KD was unlikely specific. Clones for two other E2 mutants, ubcD2 and ubc9, did not obviously change NB numbers (supplementary Table S2 and data not shown). Collectively, Eff is a specific E2 enzyme that regulates NB self-renewal cell-autonomously. Neddylation, a process of Nedd8 conjugation at a conserved lysine residue of Cullins, is essential for Cullin-based E3 ligase activities [19]. Ectopic NBs were observed in both type I (Fig 3D; 29%, n = 28) and type II clones (Fig 3H; 40%, n = 25) that were derived from a nedd8 hypomorphic allele, nedd8ΔN015.

In uba13446 metaphase NBs, aPKC was delocalized throughout the cell cortex and became cytoplasmic (Fig 3J; 43%, n = 35) and Numb was partially delocalized (Fig 3J; 29%, n = 35). Similarly, in eff773 NBs, aPKC (Fig 3K; 59%, n = 29) and Numb (Fig 3K; 21%, n = 29) were no longer asymmetrically localized at metaphase. In nedd8ΔN015 clones, both aPKC (Fig 3L; 42%, n = 24) and Numb (Fig 3L; 25%, n = 24) proteins were often delocalized. Furthermore, spindle misorientation was observed in both uba13446 (Fig 3N) and nedd8ΔN015 (Fig 3O) NBs at metaphase. Interestingly, NBs from either uba13446 or eff773 clones formed multiple centrosomes (supplementary Fig S6H–I), similar to those from slimb mutants [20,21]. Therefore, Uba1, Eff and Nedd8, similar to the SCFSlimb E3 ligase,

Figure 3. The UPS regulates NBs self-renewal and asymmetric division.

A–H Type I and type II clones from control (driver), uba13446, eff773, and nedd8ΔN015 are labeled for Dpn, Ase and CDB-GFP, Arrow, NB. I–L aPKC and Numb, CD8 and DNA are labeled in control (MACRM driver), uba13446, eff773, and nedd8ΔN015 metaphase NBs in clones. M–O Baz, α-tubulin and phospho-Histone H3 (pH3) are labeled in control (driver) and uba13446, and nedd8ΔN015 metaphase NBs in clones. Insets are enlarged views of NBs in the clones.

P–S Dpn is labeled in WT, cul1Ex, sakc06612 and cul1Ex sakc06612 at 84 h ALH.

T Quantification of NB numbers per hemisphere. The central brain is to the left of the white dotted line.

Data information: Scale bars, 5 μm (A–H), 2 μm (I–O) and 20 μm (P–S).

© 2014 The Authors

EMBO reports Vol 15 | No 2 | 2014 169
SCF^Slimb regulates self-renewal
Song Li et al
regulate asymmetric division/self-renewal of NBs as well as centrosome numbers.

SAK is a target of the SCFSlimb complex during NB self-renewal

The SCFSlimb complex targets the SAK kinase (Polo-like kinase 4) for degradation during centriole formation [20,21]. We therefore assessed whether the SCFSlimb complex controls NB self-renewal through SAK. SAK-GFP overexpression led to spindle misorientation in NBs (supplementary Fig S7B, B’; 24%, n = 63; [22]), but not NB overproliferation, likely due to the small proportion of cells undergoing orthogonal divisions (supplementary Fig S7B, B’; 5%, n = 63). Neither did it cause any apparent delocalization of aPKC, Numb or Mira in metaphase NBs (supplementary Fig S7O–P and data not shown). SAK overexpression under insc-Gal4 with concomitant cul1 KD in larval brains resulted in a significant increase in the number of NBs compared with the control (supplementary Fig S7C, D and G), suggesting a genetic enhancement. Similarly, NB overgrowth in skpA KD was exacerbated by overexpressing SAK (supplementary Fig S7E–G). Moreover, defects of NB overgrowth (supplementary Fig S3P–T) and multiple centrosomes (supplementary Fig S7H–L) were remarkably suppressed in the cul1EY1668/insc06612 double homozygotes. Thus, the SCFSlimb complex controls NB self-renewal through SAK and additional unknown targets.

Akt hyperactivation leads to the formation of supernumerary NBs and asymmetric division defects

Akt is a critical regulator of cell proliferation, growth and metabolism [23] and is required for NBs to exit from quiescence at early larval stages [24,25]. Akt KD was found to give less NBs by a RNAi screen [14]. Overexpression of a myristoylated, constitutively active form of Akt (Myr-Akt) in central brain NBs, starting from 24 h after egg laying (AEL) using insc-Gal4 under the control of a tub-Gal80α element, resulted in 65% ± 169 NBs at 96 h ALH at 29°C (Fig 4B; n = 21) compared with 91 ± 8 NBs in control brains (Fig 4A; n = 20). Upon Akt hyperactivation, the number of cells labeled by pH3, CycE and EdU were significantly increased while the number of neurons labeled by Elav or Pros was strongly decreased compared with the control (Fig 4C–L). Myr-Akt overexpression under the type I-specific driver insc-Gal4 (supplementary Fig S8B, B’; 31%, n = 75) or the type II driver (supplementary Fig S8D, D’; 53%, n = 53) resulted in NB overgrowth.

In Myr-Akt NBs, aPKC (Fig 4N; 55%, n = 51), Numb (Fig 4P; 45%, n = 51), Mira (Fig 4R; 50%, n = 32) and Pon (Fig 4T; 29%, n = 45) were delocalized at metaphase. Furthermore, Myr-Akt expression resulted in mitotic spindle misorientation in 36% of NBs with 9% orthogonal divisions (Fig 4V, V’; n = 53). Thus, Akt hyperactivation significantly disturbs asymmetric protein localization and mitotic spindle orientation during NB division. However, hyperactivation of Akt does not affect centromere number in neuroblasts (supplementary Fig S8F), suggesting that Akt and SAK likely affect spindle orientation through different mechanisms.

The SCFSlimb complex inhibits ectopic NB formation, in part through Akt

We next assessed whether Akt functions downstream of the SCFSlimb complex. In cul1EY1668, akt1/akt2 double mutant, the NB number was restored to a number close to that of the WT control (Fig 5E and G; 100 ± 15; n = 20), in contrast with either the cul1EY1668 (Fig 5B and G; 307 ± 21; n = 20) or akt1/3 (Fig 5D and G; 38 ± 5; n = 20) single mutants. Partial suppression was even observed via the heterozygous akt1 mutation (Fig 5C, F and G; 186 ± 25.6, n = 20). Knocking down of akt by RNAi also dramatically suppressed neuroblast overproliferation in cul1 RNAi but not brat RNAi background (supplementary Fig S51–L). Moreover, using an antibody against phosphorylated Akt at Serine 505, a significant increase in the phosphorylated Akt signal was observed in cul1 brains compared with the control (Fig 5H–J). Consistently, p505-Akt signal was dramatically increased in both slimb RNAi brains (Fig 5G–H) and slimb8 mutant clones (Fig 5K–L’), but decreased in both akt1 clones and akt KD (supplementary Fig S8I–L’).

We showed recently that Akt associates with Slimb and can be ubiquitinated by Slimb (Fig 5L; [26]). Another human E3 ligase tetratricopeptide repeat domain 3 facilitates the ubiquitination and degradation of Akt [27]. Next, we determined which domain of Akt is important for its association with Slimb. The central region of Akt, which contains its protein kinase domain (T2), but not the N-terminus (T1, containing a pleckstrin homology domain) or the C-terminus (T3, containing an AGC kinase domain), interacted with Slimb in S2 cells by co-immunoprecipitation (Fig 5K–L). Taken together, our biochemical and genetic data suggest that the SCFSlimb complex inhibits ectopic NB formation in part through an association with Akt (Fig 5M).

Conserved function of human BTRC in gliomas

Beta-transducin repeat containing (BTRC/β-TrCP; human homologue of Slimb) showed a significant loss in 72.5% of glioma patients (supplementary Fig S9A; n = 261) in the glioma patient database REMBRANDT [28]. Its copy number was an independent predictor of prognosis in a multivariate analysis (P = 0.0434). BTRC copy loss was observed in patients with glioblastoma (82%) and oligodendroglioma (68%). It was also observed in patients with mesenchymal and proliferative (85 and 88%, respectively) (Table 1), which are frequently associated with activated AKT signaling, a central oncogenic pathway regulating glioblastoma (GBM) growth and survival [29]. The BTRC functional module was derived by mining mRNA expression databases and mapped to 544 mRNA transcripts.
SCFSlimb regulates self-renewal

Song Li et al

Published online: January 10, 2014

EMBO reports

Vol 15 | No 2 | 2014

ª 2014 The Authors

EMBO reports

Dpn

96h ALH

wt
cul1EY11668
akt1+

p505-Akt

96h ALH

wt
cul1EY11668
akt1+

120h ALH

G

Neuroblast numbers

98
307
186

J

Normalized p505Akt intensity ratios

1.00
2.97

38
100

Dpn/p505-Akt/CD8

K

p505-Akt

cell

control

slimba

M

Flag-Slimb

Akt T1 (1-131aa)
Akt T2 (122-442aa)
Akt T3 (443-530aa)

PH domain
Protein kinase domain
AGC-kinase C terminal domain

N

Flag-Slimb

Myc-Akt

Flag-Slimb

Myc-Akt-T1

Myc-Akt-T2

Myc-Akt-T3

Input

Sak

akt

Neuroblast self-renewal

172

EMBO reports Vol 15 | No 2 | 2014

© 2014 The Authors
demonstrate that the SCFSlimb complex plays an important role in NB greater role as an oncogene than as a tumor suppressor [30]. Here we

Materials and Methods

Clonal analysis

MARCM clones were generated as previously described [13]. Briefly, larvae were heat-shocked at 37°C for 90 mins at 24 h ALH and at 10–16 h after the first heat shock. Larvae were further aged for 3 days at 25°C, and larval brains were dissected and processed for immunohistochemistry. For gene KD under the type II diver (w; UAS-Dicer 2, w; Gal4, ase-Gal80/CyO; UAS-mCD8-GFP/TM3, Ser [14]), UAS lines were crossed to type II NB driver at 25°C and shifted to 29°C at 24 h ALH for 3 or 4 days.

Live imaging recording

Live imaging recording was performed as previous described [33]. NBs of the central brain were sampled using a 40× objective on a LSM 700 confocal microscope. Pictures and videos were exported and processed with Abode Photoshop and ImageJ respectively.

Table 1. Distribution of Phillips glioma molecular subclasses in BTRC high and low groups. The BTRC copy number aberrations were significantly correlated with histological grades and molecular subclasses among glioma patients (Fishers exact test; P = 0.0003 and 1.74E-07, respectively). Consistently, the BTRC functional subtypes (High/Low) were significantly correlated with molecular subclasses of glioma patients (Table 1; P < 2.2E-16 in both REMBRANDT and Gravendeel).

Figure 5. SCFSlimb functions upstream of Akt in NB self-renewal.

A–E WT, cul1, cul1; akt1/+, akt1/akt2, and cul1;akt1, akt2/akt1, and cul1;akt1/akt2 larval brain NBs at 96 h ALH are labeled by Dpn. Scale bar, 20 μm.

F Dpn staining of cul1; akt1/akt2 larval brain NBs at 120 h ALH.

G Quantifications of NBs (n = 20).

H, I WT and cul1- larval brains are labeled by p505-Akt.

J Quantification of mean intensity of p505-Akt in single neuroblasts from WT (n = 138) and cul1- (n = 151).

K, L Control (driver) and slimbG clones are labeled by Dpn, p505-Akt and CD8.

M An illustration of the Akt constructs.

N Co-IPs of S2 cells co-expressing Flag-Slimb and Myc-Akt (Full length; FL), Myc-Akt T1 (1–131aa), T2 (131–442aa), or T3 (443–530aa). PH, pleckstrin homology. Arrows, the detected proteins. *IgG heavy chains.

O Model.

Acknowledgements

We thank J Skeath, H Stocker, I Hariharan, CT Chien; RJ Duronio; B Limbourg-Bouchon, M Bettencourt-Dias, A Wodarz; B Edgar, C Doe, F Matsuzaki, J Knoblich, CY Lee, H Richardson, T Lee, H Steller, A Swan, YN Jan, the Hybriodma Bank, the Bloomington Drosophila Stock Center, Vienna Drosophila RNAi Center for reagents and WL Yong for technical assistance. This work is supported by Duke-NUS Signature Research Program funded by the Agency for Science, Technology and Research (A*STAR), Singapore and Ministry of Health, Singapore, the National Research Foundation Singapore under its NRF fellowship (Award No. NRF2008NRF-RF001-117), and the Singapore National Research Foundation under its New Investigator Grant and administered by the Singapore Ministry of Healths National Medical Research Council [NMRC/NIG/1059/2011 (CW)].

Author contribution

HW, CT, BTA and FY designed the experiments and analyzed the data. LS, WC, ES, SA, CTK and JW conducted the experiments. LS, CT and HW wrote the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Doe CQ (2008) Neural stem cells: balancing self-renewal with differen-
tiation. Development 135: 1575 – 1587

